难熔高熵合金性能调控与增材制造
Property tuning and additive manufacturing of refractory high-entropy alloys
查看参考文献104篇
文摘
|
难熔高熵合金(refractory high-entropy alloys,RHEAs)通过添加多种难熔元素形成等原子比或近等原子比的多主元合金,具有简单的相结构和优异的高温性能,在高温合金领域具有极为广阔的应用前景。本文以难熔高熵合金的性能特点与制备工艺为基础,从合金制备与成形面临的挑战出发,综述了难熔高熵合金的性能调控方法与研究进展,介绍了增材制造难熔高熵合金实现的突破与面临的困境,对难熔高熵合金的成分设计及优化、材料制备与加工、增材制造成形进行了展望,并对其未来重点研究方向提出了如下建议:通过调控相结构和相界面克服难熔高熵合金的强韧制约;结合传统强韧化理论与难熔高熵合金自身性能特点进行材料设计;借助增材制造技术的工艺特征促进难熔高熵合金的形性调控;探究难熔高熵合金在高温及多场耦合环境下的使役性能与失效机制。 |
其他语种文摘
|
The refractory high-entropy alloys(RHEAs)usually form a multi-principal elements alloy with equal atomic ratio or near equal atomic ratio viaadding a variety of high melting point elements, showing simple phase composition and excellent high temperature properties,and processing a broad application prospect in the field of superalloy.Based on the performance characteristics and preparation process of RHEAs,and from the perspective of the current situation and challenges in fabrication and forming,the property tuning methods and its research progress of RHEAs were summarized,as well as the achieved breakthrough and the facing dilemma of the additive manufactured RHEAs. A prospection on the composition design and optimization, material preparation and processing,and additive manufactured forming of RHEAs was also proposed.The following suggestions are put forward for the key research trend of RHEAs in the future:tuning phase composition and phases interface to overcome the strength-ductility trade-off of RHEAs, designing alloys by combining the mature traditional strengthening and toughening theory with the properties of RHEAs,modifying the formability and properties of RHEAs by drawing support from the processing characteristics of additive manufacturing technology,and investigating the servicing performance and failure mechanism in high temperature or multi-field coupling condition of RHEAs. |
来源
|
材料工程
,2020,48(10):1-16 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000281
|
关键词
|
难熔高熵合金
;
性能调控
;
增材制造
|
地址
|
1.
东南大学材料科学与工程学院, 南京, 211189
2.
军事科学院国防科技创新研究院, 北京, 100071
3.
(徐州)中国矿业大学化工学院, 江苏, 徐州, 221116
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划项目
;
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:6839796
|
参考文献 共
104
共6页
|
1.
Yeh J W. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1138
次
|
|
|
|
2.
吕昭平. 高熵合金的变形行为及强韧化.
金属学报,2018,54(11):1553-1566
|
CSCD被引
55
次
|
|
|
|
3.
赵海朝. 低密度高熵合金的研究进展.
航空材料学报,2019,39(5):61-81
|
CSCD被引
4
次
|
|
|
|
4.
Diao H Y. Fundamental deformation behavior in high-entropy alloys:an overview.
Current Opinion in Solid State and Materials Science,2017,21(5):252-266
|
CSCD被引
24
次
|
|
|
|
5.
Qi T. Soft magnetic Fe_(25)Co_(25)Ni_(25)(B, Si)_(25) high entropy bulk metallic glasses.
Intermetallics,2015,66:8-12
|
CSCD被引
8
次
|
|
|
|
6.
Li J. Distinct spin glass behavior and excellent magnetocaloric effect in Er_(20)Dy_(20)Co_(20)Al_(20)RE_(20)(RE= Gd,Tb and Tm)high-entropy bulk metallic glasses.
Intermetallics,2018,96:90-93
|
CSCD被引
16
次
|
|
|
|
7.
Senkov O N. Development and exploration of refractory high entropy alloys-a review.
Journal of Materials Research,2018,33(19):3092-3128
|
CSCD被引
69
次
|
|
|
|
8.
Xia W. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys:a review.
Journal of Alloys and Compounds,2020,819:152954
|
CSCD被引
7
次
|
|
|
|
9.
Pineau A. High temperature fatigue of nickel-base superalloys-a review with special emphasis on deformation modes and oxidation.
Engineering Failure Analysis,2009,16(8):2668-2697
|
CSCD被引
20
次
|
|
|
|
10.
Tsai M H. Morphology,structure and composition of precipitates in Al_(0.3)CoCrCu_(0.5)FeNi highentropy alloy.
Materials Science and Engineering:A,2013,32:329-336
|
CSCD被引
1
次
|
|
|
|
11.
Gwalani B. Stability of ordered L12and B2precipitates in face centered cubic based high entropy alloys-Al_(0.3)CoFeCrNi and Al_(0.3)CuFeCrNi_2.
Scripta Materialia,2016,123:130-134
|
CSCD被引
8
次
|
|
|
|
12.
He J Y. A precipitation-hardened high-entropy alloy with outstanding tensile properties.
Acta Materialia,2016,102:187-196
|
CSCD被引
188
次
|
|
|
|
13.
Zhao Y L. Development of highstrength Co-free high-entropy alloys hardened by nanosized precipitates.
Scripta Materialia,2018,148:51-55
|
CSCD被引
23
次
|
|
|
|
14.
Senkov O N. Refractory high-entropy alloys.
Intermetallics,2010,18:1758-1765
|
CSCD被引
220
次
|
|
|
|
15.
Senkov O N. Mechanical properties of Nb_(25)Mo_(25)Ta_(25)W_(25)and V_(20)Nb_(20)Mo_(20)Ta_(20)W_(20) refractory high entropy alloys.
Intermetallics,2011,19:698-706
|
CSCD被引
267
次
|
|
|
|
16.
Yang C. Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr.
Materials Letters,2019,254:46-49
|
CSCD被引
13
次
|
|
|
|
17.
Xu Z Q. Design of novel low-density refractory high entropy alloys for high-temperature applications.
Materials Science and Engineering:A,2019,755:318-322
|
CSCD被引
19
次
|
|
|
|
18.
王慧琳. 光斑类型对激光熔覆MoFeCrTiWAlNb高熔点高熵合金涂层组织和性能的影响.
表面技术,2019,48(6):130-137
|
CSCD被引
13
次
|
|
|
|
19.
Zhou Q. Corrosion behavior of Hf_(0.5) Nb_(0.5)Ta_(0.5)Ti_(1.5)Zr refractory high-entropy in aqueous chloride solutions.
Electrochemistry Communications,2019,98:63-68
|
CSCD被引
8
次
|
|
|
|
20.
Tong Y G. Different-shaped ultrafine MoNbTaW HEA powders prepared via mechanical alloying.
Materials,2018,11(7):1250
|
CSCD被引
2
次
|
|
|
|
|