帮助 关于我们

返回检索结果

连续时间传递函数的赋值化指数积分变换逼近辨识
Continuous-time transfer function identification based on approximations of value-assigned exponential integral transformation

查看参考文献47篇

张珩 1   肖歆昕 1,2 *  
文摘 通过将常规的复域Laplace变换直接化简为实域上的指数积分变换,提出了连续时间传递函数辨识的赋值化指数积分变换逼近(AVE)方法.其主要特征是以采样序列为基础先行沿时间轴构造不同赋值下系统变量的指数积分变换(EIT)逼近,继而沿指数变量方向实现模型参数估计的二维化在线递推计算.文中分析了有限EIT逼近的渐近收敛性和时间连续化逼近的代数精度,以及具有一定噪声抑制能力的指数因子赋值条件.在一致激励和有界响应前提下,通过相对复杂而苛刻的仿真算例,充分验证了AVE方法对各种典型工况的有效性,清晰表明了它对于最小相位及非最小相位系统,开环或闭环的系统运行方式,乃至刚性参数情形,所具有的宽泛适应性.
其他语种文摘 In this paper a parameter identification method of continuous-time transfer function is proposed by means of the approximations of value-assigned exponential-integral-transformation (AVE) in real-domain simplified from common complex-domain Laplace transformation. The main feature is the online and recursive way in two-dimension space, that is, the exponential integral transformation (EIT) of system variables with different assignments is approximated along the time line only by using sampling data, and then the model parameters are estimated along exponential variable axis. In addition, the asymptotical convergence and its algebraic accuracy of EIT approximation in finite time are analyzed, as well as the condition to choose exponential variable values with a certain extent suppression to sampling noise is discussed. Under bounded response with consistent excitation, the effectiveness of AVE method for various typical operating conditions is sufficiently simulated and verified by a relatively complex and harsh example, which clearly shows the wide adaptability to minimum phase or non-minimum phase system, open-loop or closed-loop running, or even stiff cases.
来源 控制理论与应用 ,2020,37(10):2189-2197 【核心库】
DOI 10.7641/cta.2020.91004
关键词 传递函数 ; 系统辨识 ; 参数估计 ; 指数积分变换 ; 连续时间 ; 逼近
地址

1. 中国科学院力学研究所, 北京, 100190  

2. 中国科学院大学工程科学院, 北京, 100149

语种 中文
文献类型 研究性论文
ISSN 1000-8152
学科 数学
文献收藏号 CSCD:6839352

参考文献 共 47 共3页

1.  Xiao M H. Research on system identification based on hydraulic pump-motor of T HMCVT. Engineering in Agriculture, Environment and Food,2019,12(4):420-426 CSCD被引 1    
2.  Feng H. Parameters identification and trajectory control for a hydraulic system. ISA Transactions,2019:228-240 CSCD被引 4    
3.  Garnier H. Identification of Continuous-Time Models from Sampled Data,2008 CSCD被引 9    
4.  Garnier H. Continuous-time model identification from sampled data: Implementation issues and performance evaluation. International Journal of Control,2003,76(13):1337-1357 CSCD被引 7    
5.  Garnier H. Direct continuous-time approaches to system identification: Overview and benefits for practical applications. European Journal of Control,2015,24:50-62 CSCD被引 4    
6.  Pascu V. Benchmark problems for continuous-time model identification: Design aspects, results and perspectives. Automatica,2019,107:511-517 CSCD被引 1    
7.  Mu B Q. Hankel matrices for system identification. Journal of Mathematical Analysis and Applications,2014,409(1):494-508 CSCD被引 3    
8.  Chen L. The identification of a dam's modal parameters under random support excitation based on the Hankel matrix joint approximate diagonalization technique. Mechanical Systems and Signal Processing,2014,42(1/2):42-57 CSCD被引 8    
9.  So Derstrom T S. System Identification,1989 CSCD被引 1    
10.  Valstar J E. In flight dynamic checkout. IEEE Transactions on Aerospace,1963,1(2):213-221 CSCD被引 1    
11.  张珩. 线性多变量连续系统参数的高精度辨识. 控制理论与应用,1985,2(3):130-133 CSCD被引 1    
12.  Farhang B. Transfer function identification with filting techniques. IEEE Transactions on Signal Processing,1996,44(6):1334-1345 CSCD被引 1    
13.  Bauer D. Order estimation for subspace methods. Automatica,2001,37(10):1561-1573 CSCD被引 9    
14.  Li W. Subspace identification of continuous-time models for process fault detection and isolation. Journal of Process Control,2003,13(5):407-421 CSCD被引 2    
15.  Huang B. Closed-loop subspace identification: An orthogonal projection approach. Journal of Process Control,2005,15(1):53-66 CSCD被引 23    
16.  Huang D L. A subspace-based method for continuous-time model identification by using δ-operator model. Transactions of ISCIE,2001,14(1):1-9 CSCD被引 1    
17.  Ohsumi A. Subspace identification for continuous-time stochastic systems via distribution-based approach. Automatica,2002,38(1):63-79 CSCD被引 7    
18.  Bastogne T. PMF-based subspace method for continuous-time model identification deterministic study. IFAC Proceedings Volumes,1997,30(11):1561-1566 CSCD被引 1    
19.  Mercere G. Subspace based methods for continuous-time model identification of MIMO systems from filtered sampled data. European Control Conference. Greece: ECC,2007:4057-4064 CSCD被引 1    
20.  Inoue K. Subspace identification with moment matching. Automatica,2019,99:22-32 CSCD被引 3    
引证文献 1

1 鲁西坤 内部更新多新息梯度的Wiener系统盲辨识 控制工程,2023,30(11):2116-2124
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号