复杂裂缝网络内支撑剂运移及铺置规律分析
Analysis of proppant migration and layout in complex fracture network
查看参考文献16篇
文摘
|
水力压裂技术目前已广泛应用于页岩油气的开采中,为了提高产量,将支撑剂和携砂液按照不同的质量比混合注入裂缝,可形成支撑剂的有效铺置,从而提高裂缝的导流能力。支撑剂在复杂裂缝网络中的输送距离和铺置范围是衡量水力压裂效果的重要指标。采用室内模型实验,研究砂比、主裂缝与分支裂缝夹角以及支撑剂种类对支撑剂在复杂裂缝网络中运移和铺置规律的影响。结果表明:①随着砂比从3.0%增大到4.2%,主裂缝内支撑剂铺置高度与裂缝高度之比从0.44增大到0.465,分支裂缝内支撑剂质量与复杂裂缝网络中支撑剂质量之比从21%增大到25%。②随着主裂缝与分支裂缝夹角从90°减小到30°,分支裂缝内支撑剂质量与复杂裂缝网络中支撑剂质量之比从22%增大到30%。③支撑剂进入复杂裂缝网络的质量与实验所用支撑剂总质量之比随实验时间与总实验时间之比呈先快速增加后缓慢增加的趋势,当实验时间与总实验时间之比为0.6时,支撑剂进入复杂裂缝网络的质量与实验所用支撑剂总质量之比为65%~80%。④陶粒和自悬浮支撑剂在裂缝入口处的铺置效果不好,支撑剂铺置高度在主裂缝与分支裂缝相交处以及裂缝高度变化处有明显突变。 |
其他语种文摘
|
The hydraulic fracturing technology has been widely applied to the development of shale gas and oil reservoirs.In order to increase the productivity,the proppant and sand-carrying fluid are mixed into the fracture according to different mass ratios,which can form an effective proppant layout,thereby improving the fracture conductivity.The transportation distance and laying range of proppant in the complex fracture network are important indicators to measure the effect of hydraulic fracturing.Physical experiments are conducted to study the effects of the sand ratio,angle between main fracture and branch fracture and type of proppant on the proppant transportation and layout in complex fracture networks.It is found that:①As the sand ratio increased from 3.0% to 4.2%,the ratio of proppant layout height to fracture height in the main fracture increases from 0.44 to 0.465,and the ratio of proppant mass in branch fracture to proppant mass in the complex fracture network increases from 17% to 25%.②As the angle between the main fracture and the branch fracture decreases from 90° to 30°,the ratio of the mass of proppant in the branch fracture to the mass of proppant in the complex fracture network increases from 22% to 30%.③The ratio of the mass of the proppant entering the complex fracture network to the total mass of the proppant used in the experiment shows a tendency to increase rapidly and then slowly with the ratio of the experiment time to the total experiment time.When the ratio of the experimental time to the total experimental time is 0.6,the ratio of the mass of the proppant entering the complex fracture network to the total mass of the proppant used in the experiment is 65% to 80%.④The ceramsite and self-suspending proppant are not well placed at the entrance of the fracture.The proppant layout height has obvious abrupt changes at the intersection of the main fracture and the branch fracture and at the position where the fracture height changes. |
来源
|
油气地质与采收率
,2020,27(5):134-142 【核心库】
|
DOI
|
10.13673/j.cnki.cn37-1359/te.2020.05.016
|
关键词
|
水力压裂
;
复杂裂缝
;
支撑剂
;
砂比
;
裂缝夹角
;
页岩油气
|
地址
|
1.
中国石化石油勘探开发研究院, 北京, 100083
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1009-9603 |
学科
|
石油、天然气工业 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:6835920
|
参考文献 共
16
共1页
|
1.
左如斯. 川西坳陷须家河组陆相页岩岩相控制下的微观储集特征.
特种油气藏,2019,26(6):22-28
|
CSCD被引
11
次
|
|
|
|
2.
李国欣. 中国石油非常规油气发展现状、挑战与关注问题.
中国石油勘探,2020,25(2):1-13
|
CSCD被引
144
次
|
|
|
|
3.
雷林. 武隆区块常压页岩气水平井分段压裂技术.
石油钻探技术,2019,47(1):76-82
|
CSCD被引
12
次
|
|
|
|
4.
温庆志. 页岩气藏压裂支撑剂沉降及运移规律实验研究.
油气地质与采收率,2012,19(6):104-107
|
CSCD被引
29
次
|
|
|
|
5.
黄志文. 基于Fluent软件的携砂液流动规律模拟研究.
石油天然气学报,2012,34(11):123-125
|
CSCD被引
6
次
|
|
|
|
6.
Eissa M E. Experimental and numerical investigation of proppant placement in hydraulic fractures.
Petroleum Science and Technology,2007,27(15):1690-1703
|
CSCD被引
1
次
|
|
|
|
7.
Alotaibi M.
Slickwater proppant transport in complex fractures:New experimental findings & scalable correlation. SPE Annual Technical Conference and Exhibition,2015
|
CSCD被引
1
次
|
|
|
|
8.
Sahai R. Laboratory results of proppant transport in complex fracture systems.
SPE Hydraulic Fracturing Technology Conference,2014
|
CSCD被引
9
次
|
|
|
|
9.
Mcclure M. Bed load proppant transport during slickwater hydraulic fracturing:Insights from comparisons between published laboratory data and correlations for sediment and pipeline slurry transport.
Journal of Petroleum Science and Engineering,2018,161:599-610
|
CSCD被引
6
次
|
|
|
|
10.
孙海成. 脆性页岩网络裂缝中支撑剂的沉降特性.
油气地质与采收率,2013,20(5):107-110
|
CSCD被引
7
次
|
|
|
|
11.
李靓.
压裂缝内支撑剂沉降和运移规律实验研究,2014
|
CSCD被引
10
次
|
|
|
|
12.
张矿生. 不同粒径组合支撑剂在裂缝中运移规律模拟.
油气藏评价与开发,2019,9(6):72-77
|
CSCD被引
5
次
|
|
|
|
13.
Barati R. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells.
Journal of Applied Polymer Science,2014,131(16):11
|
CSCD被引
46
次
|
|
|
|
14.
King G E. Thirty years of gas shale fracturing:what have we learned?.
SPE Annual Technical Conference and Exhibition,2010:50
|
CSCD被引
1
次
|
|
|
|
15.
Tong S. Proppant transport study in fractures with intersections.
Fuel,2016,181:463-477
|
CSCD被引
23
次
|
|
|
|
16.
Li P. Numerical simulation on solid-liquid two-phase flow in cross fractures.
Chemical Engineering Science,2018,181:1-18
|
CSCD被引
6
次
|
|
|
|
|