PVA基复合锂电隔膜的制备及性能研究
Preparation and performance of PVA-based composite separator for Li-ion battery
查看参考文献15篇
文摘
|
以聚乙烯醇(PVA)和二氧化锆(ZrO_2)为成膜骨架材料和功能填料,利用相转化法制备PVA-ZrO_2复合微孔锂电隔膜。通过微观形貌、孔隙率、电解液亲和性、耐热性及电化学性能等对其进行表征,考察ZrO_2添加量对隔膜性能的影响,并评价隔膜的电池循环性能和倍率性能。结果表明,当PVA的浓度为10%、ZrO_2的添加量为1.5%时,复合隔膜的电解液润湿性和热稳定性较好,其电解液接触角仅为6°,吸液率达到210%,160℃下热收缩率几乎为0。该隔膜装配电池的倍率容量和循环容量保持性优异,16C电流下的放电容量为0.2C电流的50%,循环100次后容量保持约96%,优于聚烯烃隔膜。 |
其他语种文摘
|
Polyvinyl alcohol(PVA)and zirconium dioxide(ZrO_2)were used as the matrix material and the functional filler,respectively.PVA-ZrO_2composite separator for Li-ion battery was prepared by aphase inversion method.The PVA-ZrO_2 were characterized by morphology,porosity,electrolyte wettability,heat resistance and electrochemical performances.The effects of ZrO_2 filler on the performance of the composite separator were investigated.Results shown that when the solution was consisted of 10%PVA,1.5%ZrO_2particles and 88.5% water, the composite separator possessed excellent electrolyte wettability and thermal stability,the contact angle was only 6° and the electrolyte uptake was 210%.Moreover,the thermal shrinkage was about zero at 160℃.Based on the above advantages,the battery assembled with the optimized composite separator exhibited superior rate capacity retention and cycling capacity retention,for example the discharge capacity at 16Cwas about 50% of that at 0.2C,and the cycling capacity retention after 100cycles was about 96.4%,which was obviously better than those of the polyolefin-based separators. |
来源
|
化工新型材料
,2020,48(10):115-120 【扩展库】
|
DOI
|
10.19817/j.cnki.issn1006-3536.2020.10.025
|
关键词
|
聚乙烯醇
;
二氧化锆
;
隔膜
;
润湿性
;
耐热性
;
电化学性能
|
地址
|
1.
中国科学院金属研究所, 中国科学院腐蚀与防护实验室, 沈阳, 110016
2.
辽宁石油化工大学石油化工学院, 抚顺, 113001
3.
四川星明能源环保科技有限公司, 成都, 610100
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-3536 |
学科
|
化学工业 |
文献收藏号
|
CSCD:6835557
|
参考文献 共
15
共1页
|
1.
Cho T H. Composite nonwoven separator for lithium-ion battery:development and characterization.
J Power Sources,2010,195:4272-4277
|
CSCD被引
26
次
|
|
|
|
2.
Goodenough J B. The Li-ion rechargeable battery:a perspective.
J Am Chem Soc,2013,135:1167-1176
|
CSCD被引
570
次
|
|
|
|
3.
Dunn B. Electrical energy storage for the grid:a battery of choices.
Science,2011,334:928-935
|
CSCD被引
915
次
|
|
|
|
4.
Zhang K. A novel self-binding composite separator based on poly(tetrafluoroethylene)coating for Liion batteries.
Polymers,2018,10:1409
|
CSCD被引
2
次
|
|
|
|
5.
Choi J. High performance separator coated with amino-functionalized SiO_2 particles for safety enhanced lithium-ion batteries.
J Membr Sci,2017,535:151-157
|
CSCD被引
16
次
|
|
|
|
6.
Shi C. A high-temperature stable ceramiccoated separator prepared with polyimide binder/Al_2O_3 particles for lithium-ion batteries.
J Membr Sci,2016,517:91-99
|
CSCD被引
21
次
|
|
|
|
7.
Jeon H. A water-based Al_2O_3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries.
J Power Sources,2016,315:161-168
|
CSCD被引
16
次
|
|
|
|
8.
Na W. Binder-less chemical grafting of SiO_2 nanoparticles onto polyethylene separators for lithium-ion batteries.
J Membr Sci,2019,573:621-627
|
CSCD被引
8
次
|
|
|
|
9.
Liao Y. Cycling performance improvement of polypropylene supported poly(vinylidene fluoride-cohexafluoropropylene)/maleic anhydride-grated-polyvinylidene fluoride based gel electrolyte by incorporating nano-Al_2O_3 for full batteries.
J Membr Sci,2016,507:126-134
|
CSCD被引
2
次
|
|
|
|
10.
Kim K J. Ceramic composite separators coated with moisturized ZrO_2 nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries.
Phys Chem Chem Phys,2014,16:9337-9343
|
CSCD被引
8
次
|
|
|
|
11.
Zhu X. TiO_2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries.
J Membr Sci,2016,504:97-103
|
CSCD被引
21
次
|
|
|
|
12.
Wang L. Sb_2O_3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator.
J Membr Sci,2019,572:512-519
|
CSCD被引
11
次
|
|
|
|
13.
Zhang H. High thermal resistance polyimide separators prepared via soluble precusor and nonsolvent induced phase separation process for lithium ion batteries.
Electrochim Acta,2016,187:125-133
|
CSCD被引
14
次
|
|
|
|
14.
Costa C M. Silica/poly(vinylidene fluoride)porous composite membranes for lithium-ion battery separators.
J Membr Sci,2018,564:842-851
|
CSCD被引
4
次
|
|
|
|
15.
Xiao W. Preparation and performance of poly(vinyl alcohol)porous separator for lithium-ion batteries.
J Membr Sci,2015,487:221-228
|
CSCD被引
16
次
|
|
|
|
|