温度对6101铝合金导线拉伸性能的影响
Effect of Temperature on Tensile Properties of 6101 Al-alloyWires
查看参考文献23篇
文摘
|
研究了6101铝合金单股导线在-70℃到70℃温度区间的拉伸性能。结果表明,6101铝合金导线在-70℃低温下具有较高的强度和较好的变形均匀性,但是随着变形温度的提高其屈服强度和强度极限都呈下降趋势。与在-70℃的拉伸性能相比,在70℃合金的强度极限和屈服强度分别降低了10.9%和9.3%。对应变硬化率和屈服强度与温度的相关性分析发现,在拉伸变形过程中合金样品的应变硬化率随着流变应力的增大和温度的升高呈下降趋势。晶格摩擦阻力极大的影响了合金的屈服强度,对比不同温度下6101合金的屈服强度增量的拟合计算结果与实验结果,得到了这种导线屈服强度增量与温度的关系,据此可预测此类导线在不同温度下的服役可靠性。 |
其他语种文摘
|
Tensile properties of a single-strand conductor of 6101 Al-alloy were investigated in the temperature range from -70℃ to 70℃.It is found that the 6101 Al-alloy wire has high strength and good deformation uniformity at the low temperature (-70℃).However,the yield strength and the ultimate tensile strength of the alloy exhibited a decreasing trend with the increasing testing temperature.The ultimate tensile strength and the yield strength of the alloy at 70℃ decreased by 10.9% and 9.3%,respectively,comparing with those of the counterparts tested at -70℃.From the analysis on the correlation of the work hardening rate and the yield strength with the temperature,it is found that the strain hardening rate of the alloy decreased with the increasing flow stress and the raising temperatures.In addition,the lattice friction stress has a strong correlation with temperature,which is the main factor affecting the yield strength of the alloy.Based on the comparison of the fitting calculated increment of the yield strength of the alloy to the corresponding experimental results,a model about the relation between the yield strength of the alloy and the service temperature was obtained,by which the appropriate yield strength of the alloy at different service temperatures can be predicted. |
来源
|
材料研究学报
,2020,34(10):730-736 【核心库】
|
DOI
|
10.11901/1005.3093.2020.155
|
关键词
|
金属材料
;
6101铝合金导线
;
强度
;
温度
;
应变硬化率
|
地址
|
1.
东北大学材料科学与工程学院, 材料各向异性与织构教育部重点实验室, 沈阳, 110819
2.
中国科学院金属研究所, 沈阳材料科学国家研究中心, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-3093 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6835191
|
参考文献 共
23
共2页
|
1.
Karabay S. Influence of AlB_2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting.
Mater. Des,2008,29(7):1364
|
CSCD被引
11
次
|
|
|
|
2.
Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors.
Mater. Des,2006,27(10):821
|
CSCD被引
20
次
|
|
|
|
3.
Karabay S. Inoculation of transition elements by addition of AlB_2 and AlB_(12) to decrease detrimental effect on the conductivity of 99.6% aluminium in CCL for manufacturing of conductor.
J. Mater. Process. Technol,2005,160(2):174
|
CSCD被引
11
次
|
|
|
|
4.
胡静. Al-Mg-Si合金导线的生产现状及其发展前景.
轻合金加工技术,2018,46(1):5
|
CSCD被引
3
次
|
|
|
|
5.
Li Y. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy.
Appl. Phys. A,2018,124(2)
|
CSCD被引
1
次
|
|
|
|
6.
Yuan W. Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor.
Mater. Des,2011,32(8/9):4195
|
CSCD被引
21
次
|
|
|
|
7.
Zhou W W. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor.
Mater. Sci. Eng. A,2012,552:353
|
CSCD被引
14
次
|
|
|
|
8.
张洪坤. Al-Si-Cu合金低温力学性能的研究.
四川冶金,2013,35(5):51
|
CSCD被引
1
次
|
|
|
|
9.
刘瑛. 3种高强铝合金的低温拉伸力学性能研究.
金属热处理,2007(1):53
|
CSCD被引
16
次
|
|
|
|
10.
刘瑛. 2519铝合金的低温拉伸力学性能.
中南大学学报(自然科学版),2006(4):641
|
CSCD被引
8
次
|
|
|
|
11.
Zerilli F J. The effect of dislocation drag on the stress-strain behavior of F. C. C. metals.
Acta Metall. Mater,1992,40(8):1803
|
CSCD被引
12
次
|
|
|
|
12.
Abed F H. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures.
Acta Mech,2005,175(1/4):1
|
CSCD被引
10
次
|
|
|
|
13.
Lee W S. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures.
Cryogenics,2016,79:26
|
CSCD被引
6
次
|
|
|
|
14.
Lee W S. Impact deformation behaviour of Ti-6Al-4V alloy in the low-temperature regime.
J. Nucl. Mater,2010,402(1):1
|
CSCD被引
3
次
|
|
|
|
15.
Tomota Y. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation.
Acta Mater,2003,51(3):819
|
CSCD被引
7
次
|
|
|
|
16.
Lee W S. High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading.
J. Nucl. Mater,2012,420(1/3):226
|
CSCD被引
3
次
|
|
|
|
17.
叶於龙. 过量Mg、Si元素对6101电工导线性能影响及机制.
稀有金属材料与工程,2016,45(4):968
|
CSCD被引
4
次
|
|
|
|
18.
Li Z. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy.
Sci. Rep,2016,6(1)
|
CSCD被引
2
次
|
|
|
|
19.
Taylor G I. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical.
Proc. R. Soc. London,1934,145(855):362
|
CSCD被引
2
次
|
|
|
|
20.
Gutierrez I. Work-hardening of ferrite and microstructure-based modelling of its mechanical behaviour under tension.
Acta Mater,2008,56(17):4682
|
CSCD被引
9
次
|
|
|
|
|