直管谐振式低频压电声能量回收系统
Low Frequency Piezoelectric Acoustic Energy Harvest System with Straight Tube Resonance
查看参考文献20篇
文摘
|
为了高效回收环境中的声能,基于阵列式压电换能器、直管谐振腔以及能量回收电路提出了一种声能量回收系统.当声波进入直管谐振腔,管中产生谐振驻波作用于压电换能器,将声能转换为电能.本文设计了能量回收电路并且进行理论、仿真分析实验研究了压电振子数量、声波频率、声压级对输出电压的影响,分析了负载电阻对输出电压及功率的影响.实验结果表明,该装置可回收不同频率的声能量,在声波频率为96Hz时发电效果最优.当入射声压级为110dB时,不使用能量回收电路,输出交流电压有效值最高达12.9V,输出交流功率最高达到799μW;使用设计的能量回收电路,最高输出直流电压为64.2V,最高输出直流功率为473μW.该声能量回收系统不仅可以作为声能量采集器,还能对无线传感节点等独立工作的微型电子系统供能. |
其他语种文摘
|
In order to harvest the acoustic energy in the environment efficiently,an acoustic energy harvesting system is proposed with piezoelectric transducer array,straight tube resonator and energy harvesting circuit.When the acoustic wave transmits into the straight tube resonator,the resonance standing wave is generated in the tube,and excites the piezoelectric transducers;then the acoustic energy is converted into electrical energy.An energy harvesting circuit is designed and analyzed theoretically with simulation.The relationship between the number of piezoelectric chips,the frequency of acoustic waves,the acoustic pressure level and the output voltage is studied with experiments.The output voltage and power are analyzed with the change of load resistance.Experimental results show that the proposed system can harvest the acoustic energy in different frequencies,and the harvested power achieve the maximum at the sound frequency of 96Hz.Without using the energy harvesting circuit,the maximum output AC voltage effective value is 12.9V and the maximum output AC power is 799μW at the incident acoustic pressure level of 110dB.When the proposed energy harvesting circuit is applied,the maximum output DC voltage is 64.2V and the maximum output DC power is 473μW.The acoustic energy harvesting system can not only harvest acoustic energy,but also can power the micro electronic systems such as wireless sensor nodes. |
来源
|
电子学报
,2020,48(10):2071-2076 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.10.026
|
关键词
|
声能量
;
阵列式压电换能器
;
直管谐振腔
;
能量回收电路
|
地址
|
南京理工大学能源与动力工程学院, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电工技术;电子技术、通信技术 |
基金
|
国防基础加强项目
|
文献收藏号
|
CSCD:6833529
|
参考文献 共
20
共1页
|
1.
王晓辉. 基于赫姆霍兹共鸣器的声能回收器研究.
压电与声光,2018,40(3):412-416
|
CSCD被引
2
次
|
|
|
|
2.
杨峰. 采用Helmholtz共鸣器与悬臂梁压电换能器的声能采集器研究.
声学学报,2014,39(2):226-234
|
CSCD被引
6
次
|
|
|
|
3.
陈锐. 基于压电效应的声能量收集.
功能材料,2014,45(13):13076-13078
|
CSCD被引
1
次
|
|
|
|
4.
Izhar. Three degree of freedom acoustic energy harvester using improved Helmholtz resonator.
International Journal of Precision Engineering & Manufacturing,2018,19(1):143-154
|
CSCD被引
1
次
|
|
|
|
5.
Liu F. Acoustic energy harvesting using an electromechanical Helmholtz resonator.
Journal of the Acoustical Society of America,2008,123(4):1983-1990
|
CSCD被引
13
次
|
|
|
|
6.
Bin Li. Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator.
Smart Materials & Structures,2013,22(5):055013
|
CSCD被引
1
次
|
|
|
|
7.
陈翔. 倍压整流电路参数分析与设计.
科学技术与工程,2012,12(29):254-257
|
CSCD被引
1
次
|
|
|
|
8.
孙加存. 风动压电发电机的结构设计及实验研究.
压电与声光,2012,34(6):860-863
|
CSCD被引
4
次
|
|
|
|
9.
马大猷. 亥姆霍兹共鸣器.
声学技术,2002,21(2):2-3
|
CSCD被引
39
次
|
|
|
|
10.
Zhou Shaoyi. Influence of internal electrical losses on optimization of electromagnetic energy harvesting.
Smart Materials and Structures,2018,27(8):085015-085028
|
CSCD被引
1
次
|
|
|
|
11.
Cai C. Acoustic performance of different Helmholtz resonator array configurations.
Applied Acoustics,2018,130:204-209
|
CSCD被引
3
次
|
|
|
|
12.
Fu Khan. Three degree of freedom acoustic energy harvester using improved Helmholtz resonator.
International Journal of Precision Engineering and Manufacturing,2018,19(1):143-154
|
CSCD被引
1
次
|
|
|
|
13.
Liu R. Shape memory polymers for body motion energy harvesting and self-powered mechanosensing.
Advanced Materials,2018,30(8):1705195
|
CSCD被引
7
次
|
|
|
|
14.
Zhao S. A novel sensor for vibration frequency measurement with piezoelectric kinetic energy harvesting.
IEEE Sensors Journal,2018,18(22):9286-9296
|
CSCD被引
1
次
|
|
|
|
15.
Cao Ziping. Helix structure for low frequency acoustic energy harvesting.
Review of Scientific Instruments,2018,89(5):055002-1-055002-8
|
CSCD被引
2
次
|
|
|
|
16.
Hanchuan T. Acoustic metasurfaces:hollow-out patterning ultrathin acoustic metasurfaces for multifunctionalities using soft fiber/rigid bead networks.
Advanced Functional Materials,2018,28(36):1870251
|
CSCD被引
1
次
|
|
|
|
17.
Yuan W. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film.
Applied Energy,2018,230(15):52-61
|
CSCD被引
1
次
|
|
|
|
18.
Izhar. Electromagnetic based acoustic energy harvester for low power wireless autonomous sensor applications.
Sensor Review,2018,38(3):298-310
|
CSCD被引
1
次
|
|
|
|
19.
Tian Yingwei. A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film.
Journal of Physics & Chemistry of Solids,2018,117:21-27
|
CSCD被引
2
次
|
|
|
|
20.
Cao Dongxing. Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments.
Acta Mechanica Sinica,2019,35(4):894-911
|
CSCD被引
11
次
|
|
|
|
|