基于DAWGAN-GP的磁共振图像重构方法研究
Research of MRI Reconstruction Method by Using De-aliasing Wasserstein Generative Adversarial Networks with Gradient Penalty
查看参考文献21篇
文摘
|
本文提出了一种基于改进Wasserstein生成式对抗网络(De-aliasing Wasserstein Generative Adversarial Network with Gradient Penalty,DAWGAN-GP)的磁共振图像重构算法,该方法利用Wasserstein生成式对抗网络代替传统的生成式对抗网络,并结合梯度惩罚的方法提高训练速度,解决WGAN收敛缓慢问题.此外,为了有更好的重构效果,我们将感知损失,像素损失和频域损失引入至损失函数中进行网络训练.实验结果表明,对比现有的基于深度学习的磁共振图像重构算法,基于DAWGAN-GP的磁共振图像重构方法具有更好的重构效果,可获得更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更好的结构相似性(Structural Similarity Index Measure,SSIM). |
其他语种文摘
|
In this paper,we propose an improved Wasserstein generative adversarial network (WGAN),de-aliasing Wasserstein generative adversarial network with Gradient Penalty (DAWGAN-GP),for magnetic resonance imaging (MRI) reconstruction.This method uses WGAN to replace the traditional GAN,and combined the gradient penalty to improve the training speed and to solve the slow convergence problem of WGAN.In addition,for better preservation of the fine structures in the reconstructed images,we incorporate perceptual loss,pixel loss and frequency loss into the loss function for training the network.Compared with other state-of-the-art deep learning methods for MR images reconstruction,DAWGAN-GP method outperforms all other methods and can provide superior reconstruction with improved peak signal to noise ratio (PSNR) and better structural similarity index measure (SSIM). |
来源
|
电子学报
,2020,48(10):1883-1890 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.10.002
|
关键词
|
磁共振
;
图像重构
;
Wasserstein生成式对抗网络
;
感知损失
|
地址
|
1.
浙江理工大学信息学院, 浙江, 杭州, 310018
2.
解放军第一一七医院心血管内科, 浙江, 杭州, 310013
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
浙江省自然科学基金-数理医学学会联合基金重点项目
;
浙江省科技厅重点研发项目
|
文献收藏号
|
CSCD:6833505
|
参考文献 共
21
共2页
|
1.
Donoho D L. Compressed sensing.
IEEE Transactions on Information Theory,2006,52(4):1289-1306
|
CSCD被引
2930
次
|
|
|
|
2.
Lustig M. Compressed sensing MRI.
IEEE Signal Processing Magazine,2008,25(2):72-82
|
CSCD被引
80
次
|
|
|
|
3.
Yang Y. Pseudo-polar Fourier transform based compressed sensing MRI.
IEEE Transactions on Biomedical Engineering,2017,64(4):816-825
|
CSCD被引
1
次
|
|
|
|
4.
蒋明峰. 基于加权Schatten p范数最小化的磁共振图像重构方法研究.
电子学报,2019,47(4):784-790
|
CSCD被引
2
次
|
|
|
|
5.
Liu S. CS-MRI reconstruction via group-based Eigenvalue decomposition and estimation.
Neurocomputing,2018,283:166-180
|
CSCD被引
1
次
|
|
|
|
6.
Feng L. Highly accelerated real-time cardiac cine MRI using k-t sparse-sense.
Magnetic Resonance in Medicine,2013,70(1):64-74
|
CSCD被引
4
次
|
|
|
|
7.
Feng L. Golden-angle radial sparse parallel MRI:Combination of compressed sensing,parallel imaging,and golden-angle radial sampling for fast and flexible dynamic volumetric MRI.
Magnetic Resonance in Medicine,2015,72(3):707-717
|
CSCD被引
1
次
|
|
|
|
8.
Wang S. Learning joint-sparse codes for calibration-free parallel MR imaging (LINDBERG).
IEEE Transactions on Medical Imaging,2018,37(1):251-261
|
CSCD被引
2
次
|
|
|
|
9.
Huang Y. Bayesian nonparametric dictionary learning for compressed sensing MRI.
IEEE Transactions on Image Processing,2013,23(12):5007-5019
|
CSCD被引
1
次
|
|
|
|
10.
Zhan Z. Fast multi-class dictionaries learning with geometrical directions in MRI reconstruction.
IEEE Transactions on Biomedical Engineering,2016,63(9):1850-1861
|
CSCD被引
1
次
|
|
|
|
11.
Lecun Y. Deep learning.
Nature,2015,521(7553):436-444
|
CSCD被引
3268
次
|
|
|
|
12.
罗会兰. 基于深度学习的视频中人体动作识别进展综述.
电子学报,2019,47(5):1162-1173
|
CSCD被引
25
次
|
|
|
|
13.
Wang S. Accelerating magnetic resonance imaging via deep learning.
Proceedings of the IEEE International Symposium on Biomedical Imaging,2016:514-517
|
CSCD被引
1
次
|
|
|
|
14.
Yan Y. Deep ADMM-Net for compressive sensing MRI.
Proceedings of the Advances in Neural Information Processing Systems,2016:10-18
|
CSCD被引
1
次
|
|
|
|
15.
Boyd S. Distributed optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning,2011,3(1):1-122
|
CSCD被引
664
次
|
|
|
|
16.
Yang G. DAGAN:Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction.
IEEE Transactions on Medical Imaging,2018,37(6):1310-1321
|
CSCD被引
22
次
|
|
|
|
17.
Goodfellow I J. Generative adversarial nets.
Proceedings of the Advances in Neural Information Processing Systems,2014:2672-2680
|
CSCD被引
10
次
|
|
|
|
18.
Arjovsky M. Wasserstein GAN.
Proceedings of the International Conference on Machine Learning,2017:214-223
|
CSCD被引
12
次
|
|
|
|
19.
Gulrajani I. Improved training of Wasserstein GANs.
Proceedings of the Advances in Neural Information Processing Systems,2017:5767-5777
|
CSCD被引
5
次
|
|
|
|
20.
Johnson J. Perceptual losses for real-time style transfer and super-resolution.
Proceedings of the European Conference on Computer Vision,2016:694-711
|
CSCD被引
22
次
|
|
|
|
|