通信天线信道容量机电耦合建模及阵元位置灵敏度分析
Electromechanical Coupling Modeling of Channel Capacity and Sensitivity Analysis of Element Position for Communication Antenna
查看参考文献18篇
文摘
|
以相控阵天线为代表的下一代通信基站天线正在向着高频段、高增益、高密度、高指向精度方向发展,机械结构因素对通信系统信道质量的影响与制约越来越明显、机电耦合问题越来越突出.为有效保证复杂环境下5G/6G通信容量目标的实现,本文针对通信基站相控阵天线的机电热耦合问题,建立了融合阵元位置偏移、姿态偏转及温度分布等因素的基站天线信道容量机电耦合模型,可据此快速评估射频器件发热环境下通信指标退化情况;构建了阵列天线电场强度与信道容量对阵元随机位置误差的灵敏度模型,分析比较了不同工作条件下各阵元随机位置误差对通信指标的影响规律. |
其他语种文摘
|
The next generation communication base station antennas represented by the phased array antennas are developing towards high frequency,high gain,high density and high pointing accuracy.The influence of mechanical structure factors on the channel quality of communication system is becoming more and more obvious,and the electromechanical coupling problem is becoming increasingly prominent.In order to ensure the realization of 5G/6G communication capacity in complex working environment,the electromechanical coupling model of channel capacity was established in terms of the electromechanical-thermal coupling problem of the communication base station phased array antenna.Several factors such as the positional shift,deflection of the antenna element and temperature distributions were considered in this model,which can be used to assess the degradation of communication indicators in the heating environment of RF devices.A sensitivity model of the array antenna's electric field strength and channel capacity to the random position error of the antenna element was constructed,and the effect of random position error of each antenna element on the communication indicators under different working conditions was analyzed. |
来源
|
电子学报
,2020,48(9):1804-1813 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.09.019
|
关键词
|
信道容量
;
机电耦合
;
通信基站
;
相控阵
;
微带天线
|
地址
|
1.
西安建筑科技大学信息与控制工程学院, 陕西, 西安, 710055
2.
西安电子科技大学, 电子装备结构设计教育部重点实验室, 陕西, 西安, 710071
3.
中国科学院新疆天文台, 新疆, 乌鲁木齐, 830011
4.
杭州海康威视数字技术股份有限公司, 浙江, 杭州, 310052
5.
华为西安研究所, 陕西, 西安, 710077
6.
School of Civil and Environmental Engineering,University of New South Wales, Australia, Sydney, 2052
7.
中国电子科技集团公司第五十四研究所, 河北, 石家庄, 050081
8.
西北工业大学电子信息学院, 陕西, 西安, 710072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金项目
;
陕西省自然科学基金
;
陕西高校青年创新团队
;
天山创新团队计划
;
国家973计划
|
文献收藏号
|
CSCD:6833495
|
参考文献 共
18
共1页
|
1.
Guerra A. Single-anchor localization and orientation performance limits using massive arrays:MIMO vs.beamforming.
IEEE Transactions on Wireless Communications,2018,17(8):5241-5255
|
CSCD被引
2
次
|
|
|
|
2.
Wang X. Millimeter wave communication:a comprehensive survey.
IEEE Communications Surveys & Tutorials,2018,20(3):1616-1653
|
CSCD被引
13
次
|
|
|
|
3.
王巍. 基于UAV的移动物联网远距离通信节能策略研究.
电子学报,2018,46(12):2914-2922
|
CSCD被引
6
次
|
|
|
|
4.
Yang X. Hardware-constrained millimeter-wave systems for 5G:challenges,opportunities,and solutions.
IEEE Communications Magazine,2019,57(1):44-50
|
CSCD被引
5
次
|
|
|
|
5.
Agiwal M. Next generation 5G wireless networks:a comprehensive survey.
IEEE Communications Surveys & Tutorials,2016,18(3):1617-1655
|
CSCD被引
104
次
|
|
|
|
6.
Roh W. Millimeter-wave beamforming as an enabling technology for 5G cellular communications:theoretical feasibility and prototype results.
IEEE Communications Magazine,2014,52(2):106-113
|
CSCD被引
57
次
|
|
|
|
7.
Larsson E G. Massive MIMO for next generation wireless systems.
IEEE Communications Magazine,2014,52(2):186-195
|
CSCD被引
218
次
|
|
|
|
8.
Andrews J G. What will 5G be?.
IEEE Journal on Selected Areas in Communications,2014,32(6):1065-1082
|
CSCD被引
195
次
|
|
|
|
9.
Chen Y. A research for millimeter wave patch antenna and array synthesis.
Proceedings of the 26th Wireless and Optical Communication Conference (WOCC),2017:1-5
|
CSCD被引
1
次
|
|
|
|
10.
冯子奇. 基于混合波束赋形的室内毫米波MIMO系统性能分析.
电子学报,2017,45(6):1281-1287
|
CSCD被引
3
次
|
|
|
|
11.
付强.
MIMO信道容量仿真分析与干扰信道编码方案实现方法,2015
|
CSCD被引
1
次
|
|
|
|
12.
CRIS. Rewriting MIMO channel capacity for antenna configuration comparison.
Carpathian Journal of Electronic and Computer Engineering,2015,8(1):31-34
|
CSCD被引
1
次
|
|
|
|
13.
Naozumi A. Effect of directivity of on-vehicle antenna on spread and channel capacity.
Proceedings of International Symposium on Antennas and Propagation (ISAP),2018:1-2
|
CSCD被引
1
次
|
|
|
|
14.
Wang C S. Coupled structural-electromagnetic-thermal modelling and analysis of active phased array antennas.
IET Microwaves,Antennas & Propagation,2010,4(2):247-257
|
CSCD被引
20
次
|
|
|
|
15.
Wang C S. On the performances of array antennas with mechanical distortion errors considering element numbers.
International Journal of Electronics,2017,104(3):462-484
|
CSCD被引
2
次
|
|
|
|
16.
Wang C S. Effect of randomness in element position on performance of communication array antennas in internet of things.
Wireless Communications and Mobile Computing,2018,2018(2):1-8
|
CSCD被引
1
次
|
|
|
|
17.
Shannon C E. A mathematical theory of communication.
Bell System Technical Journal,1948,27(3):379-423
|
CSCD被引
2025
次
|
|
|
|
18.
Obara T. Experiment of 28 GHz band 5G super wideband transmission using beamforming and beam tracking in high mobility environment.
Proceedings of the 27th Annual International Symposium on Personal,Indoor,and Mobile Radio Communications (PIMRC),2016:1-5
|
CSCD被引
1
次
|
|
|
|
|