阵元失效条件下的高精度DOA估计方法
High Accuracy DOA Estimation Method with Array Sensor Failure
查看参考文献17篇
文摘
|
为解决波达方向(Direction Of Arrival,DOA)估计方法在阵元失效条件下性能下降甚至失效的问题,本文提出一种基于Toeplitz协方差矩阵重构的DOA估计方法.首先,提出了一种失效阵元检测方法,并根据阵列的鲁棒性将失效阵元分为冗余阵元失效和非冗余阵元失效两种情况.然后,分别针对两种失效场景提出相应DOA估计方法:一是冗余阵元失效,利用阵列冗余度,结合差联合阵列对失效阵元进行填充;二是非冗余阵元失效,利用阵列冗余度进行填充后仍存在空洞,结合矩阵填充理论,用迹范数代替秩范数进行凸松弛以恢复协方差矩阵,进而实现对虚拟阵元空洞的填充,恢复阵列自由度.相对于稀疏类算法,有效消除了模型失配的影响.最后,基于子空间方法进行DOA估计.理论和仿真结果表明,相对于现有方法,本文方法有效避免了阵元失效的影响,提高了估计精度. |
其他语种文摘
|
Array sensors failure can significantly deteriorate the performance of direction of arrival (DOA) estimation.To address this problem,an algorithm via covariance matrix reconstruction is proposed.Firstly,we devise a diagnosis method to detect the failure sensors.Based on the robustness of the array,the sensor failure scenarios are divided into redundant sensor failures and non-redundant sensor failures.Then,the corresponding DOA estimation method is adopted for two failure scenarios.For redundant sensor failures,the virtual sensors of the difference coarray can be used to occupy the positions of the failed physical sensors by utilizing the array redundancy.For non-redundant sensor failures,the virtual sensors in the difference coarray will have holes.Employing the matrix completion theory,we use trace norm instead of the rank norm for convex relaxation to recover the matrix,thereby realizing the filling of the virtual sensor holes in the difference coarray and restoring the DOFs.Compared with the sparsity-based methods,the proposed method can eliminate the effect of the off-grid.Finally,the subspace method is employed for DOA estimation.Theoretical analysis and simulation results show that the proposed methods can alleviate the effect of array sensor failure and improve the estimation performance. |
来源
|
电子学报
,2020,48(9):1688-1694 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.09.004
|
关键词
|
波达方向
;
阵元失效
;
阵元诊断
;
矩阵重构
;
冗余度
|
地址
|
1.
国防科技大学电子对抗学院, 安徽, 合肥, 230037
2.
解放军63768部队, 陕西, 西安, 710043
3.
解放军65655部队, 内蒙古, 赤峰, 024000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
安徽省自然科学基金
|
文献收藏号
|
CSCD:6833480
|
参考文献 共
17
共1页
|
1.
Qin S. Generalized coprime array configurations for direction-of-arrival estimation.
IEEE Transactions on Signal Processing,2015,63(6):1377-1390
|
CSCD被引
73
次
|
|
|
|
2.
Zheng W. DOA estimation for coprime linear arrays:an ambiguity-free method involving full DOFs.
IEEE Communications Letters,2018,22(3):562-565
|
CSCD被引
7
次
|
|
|
|
3.
Yao B. Degree of freedom strengthened cascade array for DOD-DOA estimation in MIMO array systems.
Sensors,2018,18(5):1557
|
CSCD被引
3
次
|
|
|
|
4.
Liu C L. Robustness of difference coarrays of sparse arrays to sensor failures-Part I:A theory motivated by coarray MUSIC.
IEEE Transactions on Signal Processing,2019,67(12):3213-3226
|
CSCD被引
10
次
|
|
|
|
5.
Liu C L. Robustness of difference coarrays of sparse arrays to sensor failures-Part II:Array geometries.
IEEE Transactions on Signal Processing,2019,67(12):3227-3242
|
CSCD被引
10
次
|
|
|
|
6.
Vigneshwaran S. Direction of arrival (DOA) estimation under array sensor failures using a minimal resource allocation neural network.
IEEE Transactions on Antennas and Propagation,2007,55(2):334-343
|
CSCD被引
22
次
|
|
|
|
7.
Ince T. Array failure diagnosis using nonconvex compressed sensing.
IEEE Antennas and Wireless Propagation Letters,2015,15:992-995
|
CSCD被引
3
次
|
|
|
|
8.
Singh N. A linear antenna array failure correction using improved bat algorithm.
International Journal of RF and Microwave Computer-Aided Engineering,2017,27(7):e21119
|
CSCD被引
4
次
|
|
|
|
9.
Zhang W Y. DOA estimation in MIMO radar with broken sensors by difference co-array processing.
IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing,2015:321-324
|
CSCD被引
1
次
|
|
|
|
10.
Zhu C L. Impaired sensor diagnosis,beamforming and DOA esti-mation with difference Co-Array processing.
IEEE Sensors Journal,2015,15(7):3773-3780
|
CSCD被引
7
次
|
|
|
|
11.
Wang X M. Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation.
IEEE Transactions on Signal Processing,2019,67(10):2693-2706
|
CSCD被引
8
次
|
|
|
|
12.
Yang M L. A unified array geometry composed of multiple identical subarrays with hole-free difference coarrays for underdetermined DOA estimation.
IEEE Access,2018,6:14238-14254
|
CSCD被引
1
次
|
|
|
|
13.
Zhang Y D. DOA estimation exploiting coprime arrays with sparse sensor spacing.
IEEE International Conference on Acoustics,Speech and Signal Processing,2014:2267-2271
|
CSCD被引
1
次
|
|
|
|
14.
Hosseini S M R. Array interpolation using covariance matrix completion of minimum-size virtual array.
IEEE Signal Processing Letters,2017,24(7):1063-1067
|
CSCD被引
3
次
|
|
|
|
15.
张彦奎. 基于互质阵列重构的高维波达方向估计算法.
电子学报,2018,46(12):2923-2929
|
CSCD被引
2
次
|
|
|
|
16.
Wu X H. A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation.
IEEE Transactions on Vehicular Technology,2017,66(9):8223-8237
|
CSCD被引
11
次
|
|
|
|
17.
Liu Z M. Sparsity-inducing direction finding for narrowband and wideband signals based on array covariance vectors.
IEEE Transactions on Wireless Communications,2013,12(8):1-12
|
CSCD被引
15
次
|
|
|
|
|