基于NV色心的晶体管放大器近场分布成像
Near Field Distribution Imaging of Transistor Amplifier Based on NV Color Center
查看参考文献9篇
文摘
|
微波毫米波芯片非破坏高分辨率近场分布成像对高频射频芯片的功能和失效分析至关重要.本实验基于金刚石NV(Nitrogen-Vacancy)色心这一独特的量子体系,选取直径约为14μm的金刚石样品,将其粘附于20μm直径的光纤锥形尖端,制备成高分辨、非破坏、微型化的探针,通过分析NV色心在微波场变化中的基态自旋演化规律,采用全光学的方法,一次性成像,获得芯片表面整体场分布.本文给出了氮化镓高电子迁移率晶体管的近场分布成像图,拟合出光学探测磁共振(Optically Detected Magnetic Resonance,ODMR)谱图以及Rabi谱图,并对成像结果进行了分析.这一系统具有高效、高分辨、高灵敏度、对近场干扰小等优势,有望为高集成度微波电路故障诊断、天线辐射剖面、微波集成电路电磁兼容测试等应用提供一种全新的方案. |
其他语种文摘
|
The nondestructive and high-resolution near-field distribution imaging of microwave and millimeter wave chips is very important for the function and failure analysis of RF chips.This experiment is based on the unique quantum system of diamond NV(nitrogen-vacancy)color center.A diamond sample with a diameter of about 14μm is selected and adhered to the tapered tip of a 20μm fiber.A high-resolution,non-destructive and miniaturized probe is prepared by analyzing the ground state spin evolution law of NV color center in the change of microwave field,and the all optical method is used.The whole field distribution on the chip surface is obtained by imaging.In this paper,the near-field distribution image of GaN high electron mobility transistor is given.The ODMR spectrum and Rabi spectrum are fitted,and the imaging results are analyzed.This system has the advantages of high efficiency,high resolution,high sensitivity and low near-field interference.It is expected to provide a new scheme for the application of high integration microwave circuit fault diagnosis,antenna radiation profile,microwave integrated circuit electromagnetic compatibility test,etc. |
来源
|
电子学报
,2020,48(8):1631-1634 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.08.023
|
关键词
|
金刚石NV色心
;
光学探测磁共振
;
微波场成像
;
高分辨率
|
地址
|
1.
南京邮电大学通信与信息工程学院, 江苏, 南京, 210003
2.
宿迁学院机电工程学院, 江苏, 宿迁, 223800
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家重点研发计划
;
江苏省特聘教授项目
;
南京邮电大学校长特聘教授项目
;
宿迁市产业发展引导资金项目
;
江苏省自然科学基金
|
文献收藏号
|
CSCD:6833472
|
参考文献 共
9
共1页
|
1.
张金风. GaN高电子迁移率晶体管的研究进展.
电力电子技术,2008,42(12):63-66
|
CSCD被引
1
次
|
|
|
|
2.
Dong M M. A fiber based diamond RF B-field sensor and characterization of a small helical antenna.
Applied Physics Letters,2018,113(13):131105
|
CSCD被引
7
次
|
|
|
|
3.
Yang B. Noninvasiveimaging method of microwave near field based on solid-state quantum sensing.
IEEE Transactions on Microwave Theory and Techniques,2018,66(5):2276-2283
|
CSCD被引
7
次
|
|
|
|
4.
Hu Z. Opticalsensing of broadband rf magnetic field using a micrometer-sized diamond.
IEEE Transactions on Magnetics,2019,55(3):1-4
|
CSCD被引
2
次
|
|
|
|
5.
Karande A D. In-line quantification of micronized drug and excipients in tablets by near infrared(NIR)spectroscopy:Real time monitoring of tabletting process.
International Journal of Pharmaceutics,2010,396(1/2):63-74
|
CSCD被引
4
次
|
|
|
|
6.
Chen Q. Measurement of total flavone content in snow lotus(Saussurea involucrate)using near infrared spectroscopy combined with interval PLS and genetic algorithm.
Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2010,76(1):50-55
|
CSCD被引
6
次
|
|
|
|
7.
彭世杰. 基于金刚石氮-空位色心的精密磁测量.
物理学报,2018,67(16):167601-12
|
CSCD被引
8
次
|
|
|
|
8.
Acosta V M. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond.
Applied Physics Letters,2010,97(17):174104-3
|
CSCD被引
5
次
|
|
|
|
9.
Yang B. Usingdiamond quantum magnetometer to characterize near-field distribution of patch antenna.
IEEE Transactions on Microwave Theory and Techniques,2019,67(6):2451-2460
|
CSCD被引
4
次
|
|
|
|
|