基于POD分解的高速列车尾流动力学特性研究
Study of Dynamic Characteristics in Wake Flow of High-speed Train Based on POD
查看参考文献23篇
文摘
|
高速列车尾流场是复杂的湍流区域,强度不同的旋涡迅速地生成和脱落,对乘客乘坐舒适性和列车运行稳定性、安全性造成重大影响。以CRH380A三编组列车为研究对象,采用IDDES方法对200~450km/h速度范围内高速列车尾涡的动力学特性进行了研究;通过POD方法对尾流区的强非定常流动进行了降阶分析,基于能量排序得到了流场演化过程中的重要相干结构和主要规律,并分析了各阶POD模态在尾流场演化中的物理内涵。通过对不同速度下的模态结构数量、模态频率等特性的对比分析发现,尾涡脱落的无量纲频率St≈0.15,这确立了高速列车尾涡脱落频率与运行速度的线性关系。研究结果证明了POD方法在列车复杂尾流场研究中的有效性,并为尾车气动外形优化设计提供了参考依据。 |
其他语种文摘
|
The wake field of high-speed train is a complicated turbulent area characterized by periodical generation and shedding of vortices with different intensities,which causes ride discomfort,instability and unsafety of the train.In this paper,based on the 1∶1train model of CRH380Awith three carriage consist,the dynamic characteristics of trailing vortices at different speeds from 200to 450km/h were studied by the IDDES method. In addition,the strong unsteady wake flows of the train were order-reduced and decomposed by the energybased POD method to extract the important coherent structures and their main laws in the temporal evolution processes.The physical meaning of some important POD modes of each order in the wake flow was analyzed as well.Through the comparative analysis of the characteristics of the flow field,including POD modal structures and modal frequencies at different train speed.It is found that the dimensionless frequencies of vortex shedding are equal to St≈0.15at different train speeds,which leads to the conclusion that the frequencies of vortex shedding are proportional to the train speeds in the wake flows of high-speed trains.The POD method is proved to be effective in the analysis of the complex wake flows,and the research results in this paper provide references for the aerodynamic optimization design of the trailing car. |
来源
|
铁道学报
,2020,42(9):49-57 【核心库】
|
DOI
|
10.3969/j.issn.1001-8360.2020.09.007
|
关键词
|
高速列车
;
尾涡
;
POD
;
IDDES
|
地址
|
1.
中国科学院力学研究所, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-8360 |
学科
|
铁路运输 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:6826173
|
参考文献 共
23
共2页
|
1.
Baker C J. The Flow Around High-speed Trains.
Journal of Wind Engineering & Industrial Aerodynamics,2010,98:277-298
|
CSCD被引
84
次
|
|
|
|
2.
Baker C J. The Slipstream and Wake of a High-speed Train.
Journal of Rail & Rapid Transit,2001,215(2):83-99
|
CSCD被引
13
次
|
|
|
|
3.
Vino G. Flow Structures in the Near-wake of the Ahmed Model.
Journal of Fluids & Structures,2005,20(5):673-695
|
CSCD被引
6
次
|
|
|
|
4.
Krajnovi S. Influence of Floor Motions in Wind Tunnels on the Aerodynamics of Road Vehicles.
Journal of Wind Engineering & Industrial Aerodynamics,2005,93(9):677-696
|
CSCD被引
4
次
|
|
|
|
5.
Schulte-Werning B. Unsteady Wake Flow Characteristics of High-speed Trains.
Pamm,2003,2(1):332-333
|
CSCD被引
7
次
|
|
|
|
6.
Bell J R. Wind Tunnel Analysis of the Slipstream and Wake of a Highspeed Train.
Journal of Wind Engineering & Industrial Aerodynamics,2014,134(1):122-138
|
CSCD被引
16
次
|
|
|
|
7.
Ahmed S R. Influence on Base Slant on the Wake Structure and Drag of Road Vehicles.
Journal of Fluids Engineering,1983,105(4):429-434
|
CSCD被引
3
次
|
|
|
|
8.
Yao S B. Numerical study on wake characteristics of high-speed trains.
Acta Mechanica Sinica,2013,29(6):811-822
|
CSCD被引
15
次
|
|
|
|
9.
Wang S B. The Performance of Different Turbulence Models(URANS,SAS and DES)for Predicting High-speed Train Slipstream.
Journal of Wind Engineering & Industrial Aerodynamics,2017,165:46-57
|
CSCD被引
10
次
|
|
|
|
10.
Bell J R. Flow Topology and Unsteady Features of the Wake of a Generic High-speed Train.
Journal of Fluids & Structures,2016,61:168-183
|
CSCD被引
6
次
|
|
|
|
11.
Xia C. Unsteady Flow Structures in the Wake of a High-speed Train.
Experimental Thermal and Fluid Science,2018,98:381-396
|
CSCD被引
2
次
|
|
|
|
12.
Weise M. Slipstream Velocities Induced by Trains.
Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics,2006
|
CSCD被引
1
次
|
|
|
|
13.
范晨麟. 基于本征正交分解方法的多段翼型流动分析.
上海大学学报,2012,18(1):76-82
|
CSCD被引
3
次
|
|
|
|
14.
罗杰. 基于本征正交分解的流场快速预测方法研究.
航空工程进展,2014,5(3):350-357
|
CSCD被引
6
次
|
|
|
|
15.
Muld T W. Flow Structures Around a High-speed Train Extracted Using Proper Orthogonal Decomposition and Dynamic Mode Decomposition.
Computers & Fluids,2012,57(4):87-97
|
CSCD被引
29
次
|
|
|
|
16.
Launder B E. On the Computation of Convective Heat Transfer in Complex Turbulent Flows.
Journal of Heat Transfer,1988,110:1112-1128
|
CSCD被引
3
次
|
|
|
|
17.
国家铁路局.
列车空气动力学性能数值仿真规范:TB/T 3503.4-2018,2018
|
CSCD被引
1
次
|
|
|
|
18.
柳润东. 高速铁路风障在横风与列车风耦合作用下的气动特性研究.
振动与冲击,2018,37(3):153-160
|
CSCD被引
7
次
|
|
|
|
19.
Mezic I. Spectral Properties of Dynamical Systems, Model Reduction and Decompositions.
Nonlinear Dynamics,2006,41(1/2/3):309-325
|
CSCD被引
1
次
|
|
|
|
20.
Manhart M. A Spatiotemporal Decomposition of A Fully Inhomogeneous Turbulent Flow Field.
Theoretical & Computational Fluid Dynamics,1993,5(4/5):223-242
|
CSCD被引
3
次
|
|
|
|
|