陶瓷光固化3D打印技术研究进展
Research progress in photopolymerization-based 3Dprinting technology of ceramics
查看参考文献74篇
文摘
|
综述三类主要的陶瓷光固化3D打印技术,即立体光固化(SL)、数字光处理(DLP)和双光子聚合(TPP)的工艺历史起源与演变及其在各类陶瓷材料零部件制造的最新应用研究进展以及部分设备相关产业现状。从原料特性、打印工艺、后处理和陶瓷件性能等方面进行重点总结与讨论。同时,探讨面临的部分问题和挑战,如目前仍然无法规模化生产且生产效率较低,打印件高端工业应用场景还有待挖掘,需要有针对性地进一步发展陶瓷光固化3D打印新材料、新理论和新技术,以寻求效率与应用突破。最后指出结构功能一体化/梯度化制造以及多材料/多工艺复合高效制造是未来陶瓷3D打印技术的重要发展方向。 |
其他语种文摘
|
The historical evolution,the latest research progress and the related industrial status of equipment development of the three major photopolymerization-based ceramic 3Dprinting technologies were reviewed,i.e.stereolithography (SL),digital light processing (DLP)and two-photon polymerization(TPP).The characteristics of feedstock materials,printing process,post-treatments and final ceramic properties were summarized and discussed.Meanwhile,some of the issues and challenges such as incapability of mass production and low efficiency persist,and high-end industrial application scenarios of printed parts still need to be excavated.Therefore,new materials,new theories and new technologies regarding ceramic photopolymerization-based 3Dprinting should be further developed in order to seek for efficiency and application breakthroughs.Finally,it was suggested that structural-functional integral/gradient manufacturing and multi-material/multi-process comprehensive and efficient manufacturing are the important development directions of ceramic 3D printing technology in the future. |
来源
|
材料工程
,2020,48(9):1-12 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000114
|
关键词
|
陶瓷
;
光固化
;
3D打印
;
增材制造
;
立体光固化
;
数字光处理
;
双光子聚合
|
地址
|
深圳大学增材制造研究所, 广东, 深圳, 518060
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
国家自然科学基金项目
;
广东省激光与增材制造重大专项
;
广东省自然科学基金面上项目
;
深圳市基础研究面上项目
|
文献收藏号
|
CSCD:6826014
|
参考文献 共
74
共4页
|
1.
Bengisu M.
Engineering ceramics,2013:85-207
|
CSCD被引
1
次
|
|
|
|
2.
Chen Z. 3Dprinting of ceramics:a review.
Journal of the European Ceramic Society,2019,39(4):661-687
|
CSCD被引
115
次
|
|
|
|
3.
Gibson I.
Additive manufacturing technologies:3D printing,rapid prototyping,and direct digital manufacturing,2014:451-474
|
CSCD被引
1
次
|
|
|
|
4.
Sachs E. Three-dimensional printing:rapid tooling and prototypes directly from a CAD model.
CIRP Annals-Manufacturing Technology,1990,39(1):201-204
|
CSCD被引
18
次
|
|
|
|
5.
Jacobs P.
Rapid prototyping & manufacturing:fundamentals of stereolithography,1992:1-23
|
CSCD被引
1
次
|
|
|
|
6.
Hull C W.
Methods and apparatus for production of three-dimensional objects by stereolithography:EP0171069A2,1986
|
CSCD被引
1
次
|
|
|
|
7.
Chen Z. Curing characteristics of ceramic stereolithography for an aqueous-based silica suspension.
Proceedings of the Institution of Mechanical Engineers,Part B,2010,224(4):641-651
|
CSCD被引
4
次
|
|
|
|
8.
Colombo P. Polymer-derived ceramics: 40years of research and innovation in advanced ceramics.
Journal of the American Ceramic Society,2010,93(7):1805-1837
|
CSCD被引
111
次
|
|
|
|
9.
Nakamoto T. Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer.
MHS'96Proceedings of the Seventh International Symposium on Micro Machine and Human Science,1996:53-58
|
CSCD被引
1
次
|
|
|
|
10.
Bertsch A. Microstereophotolithography using a liquid crystal display as dynamic mask-generator.
Microsystem Technologies,1997,3(2):42-47
|
CSCD被引
8
次
|
|
|
|
11.
Sun C. Projection micro-stereolithography using digital micro-mirror dynamic mask.
Sensors and Actuators A:Physical,2005,121(1):113-120
|
CSCD被引
38
次
|
|
|
|
12.
Hornbeck L. Digital light processing for high-brightness high-resolution applications.
EI'97 Proceedings of SPIE Projection Displays Ⅲ,1997:27-41
|
CSCD被引
1
次
|
|
|
|
13.
Zhang A. Rapid fabrication of complex 3Dextracellular microenvironments by dynamic optical projection stereolithography.
Advanced Materials,2012,24(31):4266-4270
|
CSCD被引
18
次
|
|
|
|
14.
Varadan V K.
Microstereolithography and other fabrication techniques for 3DMEMS,2001:20-24
|
CSCD被引
1
次
|
|
|
|
15.
Sun H. Two-photon photopolymerization and 3D lithographic microfabrication.
Advances in Polymer Science,2004,170:169-273
|
CSCD被引
1
次
|
|
|
|
16.
Lee K. Advances in 3Dnano/microfabrication using two-photon initiated polymerization.
Progress in Polymer Science,2008,33(6):631-681
|
CSCD被引
26
次
|
|
|
|
17.
Wu E. Two-photon lithography for microelectronic application.
Optical/Laser Microlithography V,1992:776-783
|
CSCD被引
1
次
|
|
|
|
18.
Maruo S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization.
Optics Letters,1997,22(2):132-134
|
CSCD被引
79
次
|
|
|
|
19.
Cumpston B. Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication.
Nature,1999,398(6722):51-58
|
CSCD被引
162
次
|
|
|
|
20.
Schizas C. On the design and fabrication by two-photon polymerization of a readily assembled micro-valve.
The International Journal of Advanced Manufacturing Technology,2010,48(5/8):435-441
|
CSCD被引
5
次
|
|
|
|
|