帮助 关于我们

返回检索结果

高功率板条激光介质的纵向强制对流换热技术
Longitudinal forced convection heat transfer for high power slab laser media

查看参考文献15篇

何建国 1,2,3   李明 4   貊泽强 1,2,3   王金舵 1,2   余锦 1,2 *   代守军 1,2   陈艳中 1   葛文琦 1   刘洋 1,3   凡炼文 5  
文摘 液体强制对流换热因具有较高的可靠性和性能稳定性而被广泛使用于高功率板条激光介质介质的制冷,但沿流场方向产生的温度梯度会显著改变激光介质的热应力状态而带来不良影响。提出了基于冷却流场与目标温度匹配控制思路的双大面侧泵激光介质纵向强制对流冷却方案(Longitudinal forced convection),利用非定常边界条件的流–固耦合有限元仿真方法对比了全腔浸泡对流冷却(Cavity forced convection)、微通道传导冷却技术方案(Micro-channel conduction),针对入口流量、流场状态、流道壁面条件等因素进行了详细研究。在30 L/min入口流量下,该方案热交换区域固液界面平均对流换热系数达104 W·m~(–2)·K~(–1)量级,且均匀分布。此外,通过改变壁面粗糙程度能够获得更高的对流换热系数。根据设计结果研制了一套板条激光放大器,实验监测点的温度结果与模拟仿真预测结果相吻合,冷却性能达到预期。
其他语种文摘 Thermal problem becomes more prominent in the highly-pumped laser gain mediums, for which, the forced convective heat transfer with the advantages of reliability and durability is widely used. However, a flow direction induced temperature gradient always appears within the laser operating substance during the convective heat transfer. Subsequently, it is significantly responsible for the detrimental thermal stress which mainly cause the wave front distortion. Herein, considering the idea of temperature matching between flow field and the operating substance, a cooling configuration for double face pumped slab crystal based on longitudinal forced convective heat transfer was presented, which showed a more efficient cooling and achieved a most homogeneous temperature distribution within the crystal. The influences of flow rate, state of flow field and surface roughness were systematically studied that a fully developed flow state, higher flow rate and rougher surface lead to an improvement in cooling capability. In the simulation with 30 L/min flow rate, the calculated convective heat transfer coefficient was as high as 104 W·m~(–2)·K~(–1), and even higher when a more coarse surface was implemented. Furthermore, a module based on the configuration was fabricated and the experimental results agree well with the simulation, which shows a good temperature distribution and very weak thermal lensing is achieved.
来源 红外与激光工程 ,2020,49(9):20200556 【核心库】
DOI 10.3788/IRLA20200556
关键词 热管理 ; 板条晶体 ; 计算流体力学 ; 强制对流换热 ; 温度分布
地址

1. 中国科学院空天信息创新研究院, 北京, 100094  

2. 中国科学院大学, 北京, 100049  

3. 中国科学院计算光学成像技术重点实验室, 中国科学院计算光学成像技术重点实验室, 北京, 100094  

4. 中国科学院西安光学精密机械研究所, 陕西, 西安, 710119  

5. 中国科学院空间应用工程与技术中心, 北京, 100094

语种 中文
文献类型 研究性论文
ISSN 1007-2276
学科 电子技术、通信技术
基金 国家重点研发计划项目 ;  中国科学院科研仪器设备研制项目 ;  中国科学院光电研究院创新项目 ;  陕西省重点研发计划项目 ;  国家重大科研仪器设备研究专项基金
文献收藏号 CSCD:6822189

参考文献 共 15 共1页

1.  Eggleston J. The slab geometry laser-part I: theory. IEEE Journal of Quantum Electronics,1984,20(3):289-301 CSCD被引 55    
2.  Kane T. The slab geometry laser-part II: thermal effects in a finite slab. IEEE Journal of Quantum Electronics,1985,21(8):1195-1210 CSCD被引 27    
3.  Lang Ye. Investigation on efficiency declines due to spectral overlap between LDAs pump and laser medium in high power double face pumped slab laser. Results in Physics,2018,8:281-285 CSCD被引 1    
4.  田晓. 空气导热作用下Nd:YAG晶体温场特性. 中国光学,2019,12(3):686-692 CSCD被引 1    
5.  白冰. 圆棒Nd:glass热容激光器的热过程半解析分析. 红外与激光工程,2012,41(3):601-606 CSCD被引 3    
6.  Li Cui. Analysis and experimental research on liquid cooling slab laser. 10798,2018:107980I CSCD被引 1    
7.  李岩. Tm:YLF 激光器温度场分布计算与实验. 红外与激光工程,2017,46(5):0506001 CSCD被引 4    
8.  Xiao Chen. Structural optimization design of water-cooling mirror with straight flow channels. Applied Thermal Engineering,2015,81:154-160 CSCD被引 1    
9.  Madhav Datta. Microheat exchanger for cooling high power laser diodes. Applied Thermal Engineering,2015,90(5):266-273 CSCD被引 5    
10.  Min Jingchun. Cooling of laser slab by forced convection through a heat sink. Heat Transfer Engineering,2011,28(11):931-939 CSCD被引 3    
11.  Wang J R. Forced convective cooling of a high-power solid-state laser slab. Applied Thermal Engineering,2006,26(5/6):549-558 CSCD被引 7    
12.  Xing Fu. Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator. Opt Express,2015,23:18458-18470 CSCD被引 1    
13.  Moghtader Dindarlu M H. New analysis of temperature distribution in side diode-pumped laser slab. Chinese Journal of Physics,2017,55(4):1704-1712 CSCD被引 1    
14.  Tang Bing. Optical distortions in end-pumped zigzag slab lasers. Appl Opt,2015,54:2693-2702 CSCD被引 6    
15.  李耀. LD面阵侧面泵浦Nd∶ YAG晶体吸收光场研究. 中国光学,2018,11(2):206-211 CSCD被引 4    
引证文献 1

1 白振旭 高功率金刚石激光技术研究进展(特邀) 红外与激光工程,2020,49(12):20201076
CSCD被引 6

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号