高功率板条激光介质的纵向强制对流换热技术
Longitudinal forced convection heat transfer for high power slab laser media
查看参考文献15篇
文摘
|
液体强制对流换热因具有较高的可靠性和性能稳定性而被广泛使用于高功率板条激光介质介质的制冷,但沿流场方向产生的温度梯度会显著改变激光介质的热应力状态而带来不良影响。提出了基于冷却流场与目标温度匹配控制思路的双大面侧泵激光介质纵向强制对流冷却方案(Longitudinal forced convection),利用非定常边界条件的流–固耦合有限元仿真方法对比了全腔浸泡对流冷却(Cavity forced convection)、微通道传导冷却技术方案(Micro-channel conduction),针对入口流量、流场状态、流道壁面条件等因素进行了详细研究。在30 L/min入口流量下,该方案热交换区域固液界面平均对流换热系数达104 W·m~(–2)·K~(–1)量级,且均匀分布。此外,通过改变壁面粗糙程度能够获得更高的对流换热系数。根据设计结果研制了一套板条激光放大器,实验监测点的温度结果与模拟仿真预测结果相吻合,冷却性能达到预期。 |
其他语种文摘
|
Thermal problem becomes more prominent in the highly-pumped laser gain mediums, for which, the forced convective heat transfer with the advantages of reliability and durability is widely used. However, a flow direction induced temperature gradient always appears within the laser operating substance during the convective heat transfer. Subsequently, it is significantly responsible for the detrimental thermal stress which mainly cause the wave front distortion. Herein, considering the idea of temperature matching between flow field and the operating substance, a cooling configuration for double face pumped slab crystal based on longitudinal forced convective heat transfer was presented, which showed a more efficient cooling and achieved a most homogeneous temperature distribution within the crystal. The influences of flow rate, state of flow field and surface roughness were systematically studied that a fully developed flow state, higher flow rate and rougher surface lead to an improvement in cooling capability. In the simulation with 30 L/min flow rate, the calculated convective heat transfer coefficient was as high as 104 W·m~(–2)·K~(–1), and even higher when a more coarse surface was implemented. Furthermore, a module based on the configuration was fabricated and the experimental results agree well with the simulation, which shows a good temperature distribution and very weak thermal lensing is achieved. |
来源
|
红外与激光工程
,2020,49(9):20200556 【核心库】
|
DOI
|
10.3788/IRLA20200556
|
关键词
|
热管理
;
板条晶体
;
计算流体力学
;
强制对流换热
;
温度分布
|
地址
|
1.
中国科学院空天信息创新研究院, 北京, 100094
2.
中国科学院大学, 北京, 100049
3.
中国科学院计算光学成像技术重点实验室, 中国科学院计算光学成像技术重点实验室, 北京, 100094
4.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
5.
中国科学院空间应用工程与技术中心, 北京, 100094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
电子技术、通信技术 |
基金
|
国家重点研发计划项目
;
中国科学院科研仪器设备研制项目
;
中国科学院光电研究院创新项目
;
陕西省重点研发计划项目
;
国家重大科研仪器设备研究专项基金
|
文献收藏号
|
CSCD:6822189
|
参考文献 共
15
共1页
|
1.
Eggleston J. The slab geometry laser-part I: theory.
IEEE Journal of Quantum Electronics,1984,20(3):289-301
|
CSCD被引
55
次
|
|
|
|
2.
Kane T. The slab geometry laser-part II: thermal effects in a finite slab.
IEEE Journal of Quantum Electronics,1985,21(8):1195-1210
|
CSCD被引
27
次
|
|
|
|
3.
Lang Ye. Investigation on efficiency declines due to spectral overlap between LDAs pump and laser medium in high power double face pumped slab laser.
Results in Physics,2018,8:281-285
|
CSCD被引
1
次
|
|
|
|
4.
田晓. 空气导热作用下Nd:YAG晶体温场特性.
中国光学,2019,12(3):686-692
|
CSCD被引
1
次
|
|
|
|
5.
白冰. 圆棒Nd:glass热容激光器的热过程半解析分析.
红外与激光工程,2012,41(3):601-606
|
CSCD被引
3
次
|
|
|
|
6.
Li Cui. Analysis and experimental research on liquid cooling slab laser.
10798,2018:107980I
|
CSCD被引
1
次
|
|
|
|
7.
李岩. Tm:YLF 激光器温度场分布计算与实验.
红外与激光工程,2017,46(5):0506001
|
CSCD被引
4
次
|
|
|
|
8.
Xiao Chen. Structural optimization design of water-cooling mirror with straight flow channels.
Applied Thermal Engineering,2015,81:154-160
|
CSCD被引
1
次
|
|
|
|
9.
Madhav Datta. Microheat exchanger for cooling high power laser diodes.
Applied Thermal Engineering,2015,90(5):266-273
|
CSCD被引
5
次
|
|
|
|
10.
Min Jingchun. Cooling of laser slab by forced convection through a heat sink.
Heat Transfer Engineering,2011,28(11):931-939
|
CSCD被引
3
次
|
|
|
|
11.
Wang J R. Forced convective cooling of a high-power solid-state laser slab.
Applied Thermal Engineering,2006,26(5/6):549-558
|
CSCD被引
7
次
|
|
|
|
12.
Xing Fu. Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator.
Opt Express,2015,23:18458-18470
|
CSCD被引
1
次
|
|
|
|
13.
Moghtader Dindarlu M H. New analysis of temperature distribution in side diode-pumped laser slab.
Chinese Journal of Physics,2017,55(4):1704-1712
|
CSCD被引
1
次
|
|
|
|
14.
Tang Bing. Optical distortions in end-pumped zigzag slab lasers.
Appl Opt,2015,54:2693-2702
|
CSCD被引
6
次
|
|
|
|
15.
李耀. LD面阵侧面泵浦Nd∶ YAG晶体吸收光场研究.
中国光学,2018,11(2):206-211
|
CSCD被引
4
次
|
|
|
|
|