扬子克拉通西缘新生代幔源钾质-超钾质岩岩浆氧逸度及其对陆内斑岩成矿作用的启示
Magmatic Oxygen Fugacity of the Cenozoic Mantle-derived Potassic-ultrapotassic Rocks in the Western Margin of the Yangtze Craton and its Implication for the Intracontinental Porphyry Mineralization
查看参考文献102篇
文摘
|
陆内环境斑岩型矿床的成矿金属与硫等物质主要来源于富原生硫化物且呈相对还原状态的角闪岩相下地壳的部分熔融,岩浆的高氧逸度和富水是成矿的关键,但还原性下地壳的熔融产物如何变成高氧逸度岩浆尚不十分明确。为此,本文对哀牢山-红河富碱斑岩带内与陆内成矿斑岩同时代的莴莊粗面玄武岩与谷装箐云煌岩开展了成岩物理化学条件研究。结果显示,这类钾质-超钾质岩的岩浆具有较高的ΔFMQ值(+0.8~ +4.3),这一特征很可能继承于经历古大洋俯冲改造的岩石圈地幔。幔源高氧逸度岩浆具备调节与改造下地壳熔融产物氧逸度的潜力。因此,源于古俯冲改造的岩石圈地幔且具有较高ΔFMQ(+2.7~ +4.3)的钾质-超钾质岩浆,可能是导致陆内斑岩成矿系统中斑岩岩浆具较高氧逸度的原因,这类钾质-超钾质岩浆与富硫化物的新生的下地壳来源的熔体的混合,可能是导致陆内斑岩成矿的关键。 |
其他语种文摘
|
At present,ore-forming metals and sulfur for the intracontinental porphyry deposits are thought to be mainly sourced from the magma derived from partial melting of the amphibolite facies lower crust which is rich in primary sulfides under relatively reduced condition. However,it remains unclear how the melting products of such a reduced lower crust could become the magma with relatively high oxygen fugacity (fO2). Therefore,petrogenetic physicochemical conditions of the Wozhuang trachybasalt and Guzhuangqing minette which are spatially coexisted with the coeval ore-bearing porphyries in the Ailaoshan-Red River intracontinental alkali-rich porphyry belt have been studied in this paper. The results show that magmas of these potassic-ultrapotassic rocks have relatively high oxygen fugacities ΔFMQ (+ 0.8 ~ + 4.3),which could be inherited from characteristics of the lithospheric mantle modified by the subduction of the ancient oceanic plate. The mantle-derived high-fO2 potassic-ultrapotassic magmas have potential to adjust and modify oxygen fugacity conditions of the lower crust melting products. Therefore,the high ΔFMQ (+2.7~ +4.3) potassic-ultrapotassic magmas,derived from the lithospheric mantle modified by ancient subduction,could result in the relatively high fO2-of the porphyry magma in the intracontinental porphyry mineralization system. The mixing between these high-fO2 potassic-ultrapotassic magmas and the melts derived from partial melting of the sulfide-rich juvenile lower crust could be the key factor resulting in the intracontinental porphyry mineralization. |
来源
|
矿物岩石地球化学通报
,2020,39(4):794-809 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2020.39.031
|
关键词
|
扬子克拉通
;
钾质-超钾质岩石
;
岩浆氧逸度
;
陆内斑岩矿床
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
中国科学院B类先导专项
;
国家自然科学基金
;
国家自然科学基金项目
;
西部之光“一带一路”团队项目
|
文献收藏号
|
CSCD:6797066
|
参考文献 共
102
共6页
|
1.
Ballard J R. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile.
Contributions to Mineralogy and Petrology,2002,144(3):347-364
|
CSCD被引
233
次
|
|
|
|
2.
Ballhaus C. Oxygen fugacity controls in the Earth 's upper mantle.
Nature,1990,348(6300):437-440
|
CSCD被引
27
次
|
|
|
|
3.
Ballhaus C. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle.
Contributions to Mineralogy and Petrology,1991,107(1):27-40
|
CSCD被引
56
次
|
|
|
|
4.
Ballhaus C. Redox states of lithospheric and asthenospheric upper mantle.
Contributions to Mineralogy and Petrology,1993,114(3):331-348
|
CSCD被引
39
次
|
|
|
|
5.
Bao X S. Geochemical discrimination between fertile and barren Eocene potassic porphyries in the Jinshajiang Cu-Au-Mo metallogenic belt,SW China: Implications for petrogenesis and metallogeny.
Ore Geology Reviews,2020,116:103258
|
CSCD被引
3
次
|
|
|
|
6.
Bell A S. Experimental evidence for the alteration of the Fe~(3+)/ΣFe of silicate melt caused by the degassing of chlorinebearing aqueous volatiles.
Geology,2011,39(5):499-502
|
CSCD被引
5
次
|
|
|
|
7.
Bi X W. Crystallisation conditions (T,P,fO_2) from mineral chemistry of Cu-and Au-mineralised alkaline intrusions in the Red River-Jinshajiang alkaline igneous belt, western Yunnan Province,China.
Mineralogy and Petrology,2009,96(1/2):43-58
|
CSCD被引
24
次
|
|
|
|
8.
Blundy J D. Carbon-fluid equilibria and the oxidation state of the upper mantle.
Nature,1991,349(6307):321-324
|
CSCD被引
7
次
|
|
|
|
9.
Brounce M. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume,and the role of volcanic gases in Earth's oxygenation.
Proceedings of the National Academy of Sciences of the United States of America,2017,114(34):8997-9002
|
CSCD被引
8
次
|
|
|
|
10.
Brounce M N. Variations in Fe~(3+)/ΣFe of mariana arc basalts and mantle wedge fO_2.
Journal of Petrology,2014,55(12):2513-2536
|
CSCD被引
17
次
|
|
|
|
11.
Canil D. Ferric iron in peridotites and mantle oxidation states.
Earth and Planetary Science Letters,1994,123(1/3):205-220
|
CSCD被引
14
次
|
|
|
|
12.
Canil D. Mantle redox in Cordilleran ophiolites as a record of oxygen fugacity during partial melting and the lifetime of mantle lithosphere.
Earth and Planetary Science Letters,2006,248(1/2):106-117
|
CSCD被引
4
次
|
|
|
|
13.
Carmichael I S E. The redox states of basic and silicic magmas: A reflection of their source regions?.
Contributions to Mineralogy and Petrology,1991,106(2):129-141
|
CSCD被引
46
次
|
|
|
|
14.
Chen Y W. Element geochemistry, mineralogy,geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong province,China: Implications for U mineralization.
Lithos,2012,150:119-134
|
CSCD被引
24
次
|
|
|
|
15.
Chiaradia M. Rapid transition to long-lived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru).
Earth and Planetary Science Letters,2009,288(3/4):505-515
|
CSCD被引
7
次
|
|
|
|
16.
Chung S L. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago.
Nature,1998,394(6695):769-773
|
CSCD被引
245
次
|
|
|
|
17.
Cottrell E. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle.
Earth and Planetary Science Letters,2011,305(3/4):270-282
|
CSCD被引
25
次
|
|
|
|
18.
Crabtree S M. An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: A comparison of pre-and post-eruptive Fe~(2+) concentrations.
Contributions to Mineralogy and Petrology,2012,163(2):209-224
|
CSCD被引
6
次
|
|
|
|
19.
Deng J. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China.
Gondwana Research,2014,26(2):419-437
|
CSCD被引
279
次
|
|
|
|
20.
Deng J. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China.
Earth-Science Reviews,2014,138:268-299
|
CSCD被引
245
次
|
|
|
|
|