激励响应复合材料的4D打印及其应用研究进展
Progress in 4Dprinting of stimulus-responsive composites and its applications
查看参考文献80篇
文摘
|
激励响应复合材料是一种智能材料,通常具有自感知、自主响应、形状记忆、自适应和自修复等特征。本文对4D打印中使用的激励响应材料进行了综述,重点介绍4D打印形状记忆复合水凝胶和形状记忆聚合物(SMP)及其复合材料的应用研究进展。最后,总结了4D打印在生物医疗和航空航天领域的应用现状,并对4D打印的未来发展趋势以及应用前景进行展望。4D打印是一项新兴制造技术,尽管目前已经出现了许多不同的打印方法、可打印智能材料和驱动方式,但是4D打印在实际工程应用中仍然面临许多挑战。新打印技术、新智能材料、新结构设计和建模软件需要发展以促进4D打印在软机器人、生物医学、航空航天和智能电子设备等领域的实际应用。 |
其他语种文摘
|
The stimulus-response composite is a kind of intelligent material,which usually possesses the characteristics of self-perception,autonomous response,shape memory,adaptive and self-healing. The stimulus-response materials used in 4Dprinting were reviewed in this paper,and the application research progress of 4Dprinted shape memory composite hydrogels and shape memory polymers (SMPs)and their composites was focused.Finally,the application status of 4Dprinting in the biomedical and aerospace fields was summarized,and the development trend and application prospect of 4Dprinting were prospected.4Dprinting is an emerging manufacturing technology.Although various printing methods,printable smart materials and driving methods have been developed,4D printing still faces many challenges in practical engineering applications.Novel printing technologies, smart materials,structural design and modeling software need to be developed to facilitate the practical application of 4Dprinting in the fields of soft robotics,biomedicine,aerospace and intelligent electronic equipment. |
来源
|
材料工程
,2020,48(8):1-13 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000211
|
关键词
|
4D打印
;
形状记忆复合水凝胶
;
形状记忆聚合物
;
复合材料
;
激励响应
|
地址
|
1.
哈尔滨工业大学航天科学与力学系, 哈尔滨, 150001
2.
哈尔滨工业大学(威海校区)土木工程系, 山东, 威海, 264209
3.
哈尔滨工业大学, 特种环境复合材料技术国家级重点实验室, 哈尔滨, 150080
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:6794664
|
参考文献 共
80
共4页
|
1.
Gao W. The status, challenges,and future of additive manufacturing in engineering.
Comput-Aided Design,2015,69:65-89
|
CSCD被引
50
次
|
|
|
|
2.
Truby R L. Printing soft matter in three dimensions.
Nature,2015,540(7633):371-378
|
CSCD被引
76
次
|
|
|
|
3.
Rastogi P. Breakthrough in the printing tactics for stimuli responsive materials:4Dprinting.
Chemical Engineering Journal,2019,366:264-304
|
CSCD被引
10
次
|
|
|
|
4.
Choi J. 4Dprinting technology:a review.
3D Printing and Additive Manufacturing,2015,2:159-167
|
CSCD被引
9
次
|
|
|
|
5.
Khoo Z X. 3Dprinting of smart materials:a review on recent progresses in 4Dprinting.
Virtual and Physical Prototyping,2015,10(3):103-122
|
CSCD被引
23
次
|
|
|
|
6.
Ding Z. 4Drods:3Dstructures via programmable 1Dcomposite rods.
Materials & Design,2018,137:256-265
|
CSCD被引
10
次
|
|
|
|
7.
An J. Design and 3D printing of scaffolds and tissues.
Engineering,2015,1(2):261-268
|
CSCD被引
15
次
|
|
|
|
8.
Liu Y. 3Dprinted microstructures for flexible electronic devices.
Nanotechnology,2019,30(41):414001
|
CSCD被引
2
次
|
|
|
|
9.
Zolfagharian A. Evolution of 3Dprinted soft actuators.
Sensors and Actuators A: Physical,2016,250:258-272
|
CSCD被引
16
次
|
|
|
|
10.
Raviv D. Active printed materials for complex self-evolving deformations.
Scientific Reports,2014,4:7422
|
CSCD被引
17
次
|
|
|
|
11.
Campbell T A.
The next wave: 4Dprinting programming the material world,2014:1-15
|
CSCD被引
1
次
|
|
|
|
12.
Tibbits S. 4Dprinting:multi-material shape change.
Architectural Design,2014,84(1):116-121
|
CSCD被引
42
次
|
|
|
|
13.
Gladman A S. Biomimetic 4Dprinting.
Nature Materials,2016,15(4):413-418
|
CSCD被引
90
次
|
|
|
|
14.
Mao Y. 3Dprinted reversible shape changing components with stimuli responsive materials.
Scientific Reports,2016,6(1):1-13
|
CSCD被引
1
次
|
|
|
|
15.
Zhao Z. Hydrophilic/hydrophobic composite shape-shifting structures.
ACS Applied Materials & Interfaces,2018,10(23):19932-19939
|
CSCD被引
5
次
|
|
|
|
16.
Baker A B. 4Dprinting with robust thermoplastic polyurethane hydrogel-elastomer trilayers.
Materials & Design,2019,163:107544
|
CSCD被引
7
次
|
|
|
|
17.
Kim J. Thermally responsive rolling of thin gel strips with discrete variations in swelling.
Soft Matter,2012,8(8):2375-2381
|
CSCD被引
2
次
|
|
|
|
18.
Armon S. Geometry and mechanics in the opening of chiral seed pods.
Science,2011,333(6050):1726-1730
|
CSCD被引
24
次
|
|
|
|
19.
Naficy S. 4Dprinting of reversible shape morphing hydrogel structures.
Macromolecular Materials and Engineering,2017,302(1):1600212
|
CSCD被引
15
次
|
|
|
|
20.
Guo J. 4Dprinting of robust hydrogels consisted of agarose nanofibers and polyacrylamide.
ACS Macro Letters,2018,7(4):442-446
|
CSCD被引
8
次
|
|
|
|
|