基于时变模型平均方法的我国航空客运量预测
Time-varying forecast averaging for air passengers in China
查看参考文献37篇
文摘
|
机场扩建、政策导向、经济发展等外在因素的变化常常导致航空客运量数据发生结构性改变,其模型的设定也在很大程度上存在不确定性,因此,精准而稳定地预测航空客运量变得十分困难.为了解决以上问题,本文采用了一种时变模型平均方法(TVJMA)(Sun等,2020,2012)对全国Top 5机场的客运量进行了预测研究,该方法在模型平均时基于最小化局部Jackknife准则给出了最优的权重选择,并通过非参数估计,实现了最优权重随时间变化.实证结果表明,本文所采用的TVJMA方法显著优于其它基准模型,包括Hansen和Racine (2012)的Jackknife模型平均(JMA)以及自回归模型(AR),单整自回归移动平均模型(ARIMA),季节性单整自回归移动平均模型(SARIMA)和时变参数模型(TVP)等传统方法.进一步,对不同的预测步长,TVJMA在航空客运量的预测效果同样具有稳健性.因此,TVJMA方法可以有效地降低由于航空客运量的结构性变化和预测模型不确定性等导致的预测风险,进而做出精准而稳定的客运量预测. |
其他语种文摘
|
Structural changes often occur in air passengers due to some external factors such as airport expansion,policy orientation and economic development;model uncertainty is a common long-standing issue in forecasting.To address these issues,a novel time-varying Jackknife model averaging method (TVJMA) (Sun et al,2020,2012) is employed to predict air passengers of the Top 5 airports in China.Based on nonparametric estimation,the optimal time-varying weights for various candidate models with time-varying parameters in candidate models are obtained by minimizing the local Jackknife criterion at every time point t.TVJMA method allows the weights and parameters to change over time.Empirical results show that the TVJMA method used in this paper is significantly superior to other benchmark models,including Hansen and Racine's (2012) Jackknife model averaging method (JMA),autoregression model (AR),autoregression integrated moving average model (ARIMA),seasonal autoregression integrated moving average model (SARIMA),and time-varying parameter model (TVP).Furthermore,the predictive effect of TVJMA is robust to different test sets and prediction steps.Overall,TVJMA method effectively reduces the predictive risk caused by structural changes and model uncertainty,and thus produces accurate and stable forecasts of air passengers. |
来源
|
系统工程理论与实践
,2020,40(6):1509-1519 【核心库】
|
DOI
|
10.12011/1000-6788-2020-0443-11
|
关键词
|
航空客运量
;
时变模型平均
;
非参数估计
;
时变权重
;
时变参数预测模型
|
地址
|
1.
中国科学院数学与系统科学研究院, 北京, 100190
2.
中国科学院大学经济与管理学院, 北京, 100190
3.
中国科学院预测科学研究中心, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6788 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金基础科学中心项目
;
国家自然科学基金国家杰出青年科学基金
;
国家自然科学基金重点项目
;
国家自然科学基金青年科学基金项目
|
文献收藏号
|
CSCD:6793918
|
参考文献 共
37
共2页
|
1.
Sun Y Y. Time-varying model averaging.
Journal of Econometrics,2020
|
CSCD被引
3
次
|
|
|
|
2.
Sun Y Y.
Time-varying forecast averaging for tourism demand. Working Paper
|
CSCD被引
1
次
|
|
|
|
3.
Hansen B E. Jackknife model averaging.
Journal of Econometrics,2012,167(1):38-46
|
CSCD被引
46
次
|
|
|
|
4.
Zhang Y. A hybrid model of neural network and grey theory for air traffic passenger volume forecasting.
Key Engineering Materials,2010,439/440:818-822
|
CSCD被引
1
次
|
|
|
|
5.
Carmonabenitez R B. An econometric dynamic model to estimate passenger demand for air transport industry.
Transportation Research Procedia,2017,25:17-29
|
CSCD被引
1
次
|
|
|
|
6.
张军峰. 基于状态相关模态切换混合估计的航迹预测.
系统工程理论与实践,2014,34(11):2955-2964
|
CSCD被引
6
次
|
|
|
|
7.
葛翔宇. 交通基础设施投资与经济增长——基于准自然实验的证据.
系统工程理论与实践,2019,39(4):922-934
|
CSCD被引
6
次
|
|
|
|
8.
鲁渤. 港□竞争力与腹地经济协同机制面板数据分析.
系统工程理论与实践,2019,39(4):1079-1090
|
CSCD被引
7
次
|
|
|
|
9.
梁小珍. 基于奇异谱分析的我国航空客运量集成预测模型.
系统工程理论与实践,2017,37(6):1479-1488
|
CSCD被引
14
次
|
|
|
|
10.
Polt S.
Revenue management tutorial. Presentation at AGIFORS Reservations Yield Management Study Group,2002
|
CSCD被引
1
次
|
|
|
|
11.
Xiao Y. A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting.
Journal of Air Transport Management,2014,39:1-11
|
CSCD被引
6
次
|
|
|
|
12.
Flyvbjerg B. How (In) accurate are demand forecasts in public works projects? The case of transportation.
Journal of the American Planning Association,2005,71(2):131-146
|
CSCD被引
4
次
|
|
|
|
13.
吴东华. 多目标飞机航线调配模型的模糊优化算法.
系统工程理论与实践,2014,34(4):1011-1017
|
CSCD被引
2
次
|
|
|
|
14.
罗谦. 基于航空信息网络的枢纽机场航班延误预测模型.
系统工程理论与实践,2014,34(S1):143-150
|
CSCD被引
10
次
|
|
|
|
15.
黄文强. 支持向量机在航空运输量预测中的应用.
计算机工程,2005,31(S1):253-255
|
CSCD被引
1
次
|
|
|
|
16.
Suryani E. Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework.
Expert Systems with Applications,2010,37(3):2324-2339
|
CSCD被引
11
次
|
|
|
|
17.
Tsui W H K. Forecasting of Hong Kong airport's passenger throughput.
Tourism Management,2014,42:62-76
|
CSCD被引
9
次
|
|
|
|
18.
Xie G. Short-term forecasting of air passenger by using hybrid seasonal decomposition and least squares support vector regression approaches.
Journal of Air Transport Management,2014,37:20-26
|
CSCD被引
6
次
|
|
|
|
19.
Kim S. Forecasting short-term air passenger demand using big data from search engine queries.
Automation in Construction,2016,70:98-108
|
CSCD被引
3
次
|
|
|
|
20.
隋建利. 中国旅游发展与宏观经济增长的非线性时变因果关系-基于非线性马尔科夫区制转移因果模型.
经济管理,2017(8):26-43
|
CSCD被引
1
次
|
|
|
|
|