基于杠杆效应和结构突变的HAR族模型及其对股市波动率的预测研究
The HAR-type models with leverage and structural breaks and their applications to the volatility forecasting of stock market
查看参考文献50篇
文摘
|
近年来,基于高频交易数据的HAR族模型在对各类金融市场波动率的预测研究中展现出了良好的预测效果.本文在4个经典或前沿的HAR族模型的基础上,考虑杠杆效应和结构突变因素对波动率的预测作用,构建4个带杠杆效应和结构突变的HAR族模型.接着,以上证综指和深证成指的5分钟高频交易数据为研究样本,对上述模型进行样本内和样本外分析,以此检验各成分对股市波动率的预测作用以及比较各模型的预测能力.实证结果显示:已实现波动率,连续波动率,下行波动率,上行波动率,杠杆效应和结构突变成分对股市波动率的预测作用较强,而跳跃波动率,符号跳跃方差对股市波动率的预测作用较弱;带杠杆效应和结构突变的HAR族模型对股市波动率的样本内拟合效果和样本外预测能力都明显优于相对应的不带杠杆和结构突变的HAR族模型,其中大多数情况下LHAR-CJ-SB模型展现出最高的拟合效果和预测精度.以上结果表明,杠杆效应和结构突变因素能有效提高HAR族模型的预测精度,所以在HAR族模型的构建中这两个因素不能被忽视. |
其他语种文摘
|
Recently,the HAR-type models based on high-frequency transaction data have shown a good forecasting performance for the volatility of financial markets.On the basis of 4 existing HAR-type models,through adding the leverage and structural breaks,we develop 4 new HAR-type models with leverage and structural breaks.Then,we use high-frequency transaction data for five minutes of the Shanghai Composite Index and Shenzhen Component Index as the study sample,which respectively analyzes on all HAR-type models.The results indicate that the realized volatility,continuous volatility,upside volatility,downside volatility,leverage and structural breaks have obvious in-sample prediction power for the volatility in Chinese stock market,while the jump volatility and signed jump variation show weak in-sample predictive ability.In addition,we also find,compared with HAR-type models without leverage and structural breaks,the new HAR-type models with leverage and structural breaks have higher in-sample fitting capacity and out-of-sample predictive power for the volatility.In most cases,the LHAR-CJ-SB model exhibits the best in-sample and out-of-sample performances.Our results suggest that adding the leverage and structural breaks can improve the prediction performance of HAR-type models,so we cannot ignore these two factors when we build new HAR-type models. |
来源
|
系统工程理论与实践
,2020,40(5):1113-1133 【核心库】
|
DOI
|
10.12011/1000-6788-2019-0561-21
|
关键词
|
HAR-RV模型
;
杠杆效应
;
结构突变
;
ICSS算法
;
MCS检验
|
地址
|
1.
厦门大学管理学院中国能源政策研究院, 厦门, 361005
2.
中南大学商学院, 长沙, 410083
3.
中国科学院数学与系统科学研究院, 管理、决策与信息系统重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6788 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金
;
中央高校基本科研业务费专项资金
;
福建省社会科学研究规划项目
|
文献收藏号
|
CSCD:6793889
|
参考文献 共
50
共3页
|
1.
Andersen T G. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts.
International Economic Review,1998,39(4):885-905
|
CSCD被引
116
次
|
|
|
|
2.
Andersen T G. Modeling and forecasting realized volatility.
Econometrica,2003,71(2):579-625
|
CSCD被引
101
次
|
|
|
|
3.
Corsi F. A simple approximate long-memory model of realized volatility.
Journal of Financial Econometrics,2009,7(2):174-196
|
CSCD被引
78
次
|
|
|
|
4.
Andersen T G. A reduced form framework for modeling volatility of speculative prices based on realized variation measures.
Journal of Econometrics,2011,160(1):176-189
|
CSCD被引
9
次
|
|
|
|
5.
Andersen T G. Roughing it up: Including jump components in the measurement, modeling and forecasting of return volatility.
Review of Economics and Statistics,2007,89(4):701-720
|
CSCD被引
64
次
|
|
|
|
6.
Barndorff-Nielsen O E. Econometrics of testing for jumps in financial economics using bipower variation.
Journal of Financial Econometrics,2006,4(1):1-30
|
CSCD被引
112
次
|
|
|
|
7.
Chen X. News-good or bad-and its impact on volatility predictions over multiple horizons.
Review of Financial Studies,2011,24(1):46-81
|
CSCD被引
11
次
|
|
|
|
8.
Patton A J. Good volatility, bad volatility: Signed jumps and the persistence of volatility.
Review of Economics and Statistics,2015,97(3):683-697
|
CSCD被引
34
次
|
|
|
|
9.
Shephard N.
Measuring downside risk-realised semivariance,2008
|
CSCD被引
1
次
|
|
|
|
10.
文凤华. 基于LHAR-RV-V模型的中国股市波动性研究.
管理科学学报,2012,15(6):59-67
|
CSCD被引
18
次
|
|
|
|
11.
陈浪南. 中国股市高频波动率的特征、预测模型以及预测精度比较.
系统工程理论与实践,2013,33(2):296-307
|
CSCD被引
24
次
|
|
|
|
12.
Duong D. Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction.
Journal of Econometrics,2015,187(2):606-621
|
CSCD被引
3
次
|
|
|
|
13.
唐勇. 考虑共同跳跃的波动建模:基于高频数据视角.
中国管理科学,2015,23(8):46-53
|
CSCD被引
8
次
|
|
|
|
14.
Wang Y. Forecasting realized volatility in a changing world: A dynamic model averaging approach.
Journal of Banking & Finance,2016,64:136-149
|
CSCD被引
11
次
|
|
|
|
15.
Gong X. Structural breaks and volatility forecasting in the copper futures market.
Journal of Futures Markets,2018,38(3):290-339
|
CSCD被引
6
次
|
|
|
|
16.
罗嘉雯. 基于贝叶斯因子模型金融高频波动率预测研究.
管理科学学报,2017,20(8):13-26
|
CSCD被引
11
次
|
|
|
|
17.
马锋. 基于符号收益和跳跃变差的高频波动率模型.
管理科学学报,2017,20(10):31-43
|
CSCD被引
16
次
|
|
|
|
18.
Liu J. Forecasting the oil futures price volatility: Large jumps and small jumps.
Energy Economics,2018,72:321-330
|
CSCD被引
6
次
|
|
|
|
19.
李俊儒. 基于波动率测量误差的波动率预测模型.
系统工程理论与实践,2018,38(8):1905-1918
|
CSCD被引
9
次
|
|
|
|
20.
魏宇. 中国股市波动的异方差模型及其SPA检验.
系统工程理论与实践,2007,27(6):27-35
|
CSCD被引
6
次
|
|
|
|
|