车用空载湿式离合器高速碰撞摩擦特性及带排转矩分析
Rub-impact Characteristics and Drag Torque at High Circumferential Velocities in No-load Multi-plate Wet Clutch for Vehicles
查看参考文献20篇
文摘
|
试验发现高速空载工况下湿式离合器易出现摩擦片和钢片之间的碰撞摩擦(简称碰摩),由此引起离合器带排转矩的急剧增大,高速带排对传动装置的效率和可靠性会造成重大影响,因此建立可靠的摩擦副碰摩模型用来探究高速带排的演变规律十分有必要。采用小扰动法获得间隙流场的刚度和阻尼,积分得到流体力;分析摩擦片与钢片碰摩过程中的弹性变形和能量损失,构建摩擦副的碰撞接触力和摩擦力方程;在此基础上,考虑流体力、碰撞力、摩擦力以及对偶摩擦片与钢片之间的运动耦合,建立多摩擦副流体与固体耦合碰摩动力学模型,利用4阶龙格-库塔法求解,研究摩擦副非线性运动的分岔和混沌特征。结果表明:当摩擦副未发生碰摩时,摩擦片和钢片运动稳定,呈现周期性运动规律;当摩擦副发生碰摩时,在轴向碰摩力作用下,摩擦片和钢片运动失稳,呈现混沌运动状态;随着润滑油流量的增大,摩擦副发生碰摩的临界转速提高,但是摩擦副的碰摩频率也会提高,导致带排转矩增大。 |
其他语种文摘
|
It is found in experiments that the rub-impact between friction plate and steel plate is easy to appear in the high-speed no-load wet clutch, which results in the sharp increase in drag torque. The high-speed drag torque has significant negative influence on the efficiency and reliability of transmissions. So it is necessary to establish a reliable rub-impact model of friction pair to explore the change law of high-speed drag torque. The fluid stiffness and damping are derived to obtain the fluid forces by small perturbation method. The elastic deformations and energy loss in the process of rub-impact between friction plate and steel plate are analyzed to establish the rubbing function of friction pairs. On this basis, the fluid force, rub-impact force, friction, and coupling motion between the friction plate and steel plate in three degrees of freedom are taken into consideration to establish a fluid-solid coupling rub-impact dynamic model for multi-plate wet clutch, which is solved by fourth-order Runge-Kutta method. Then the bifurcation and chaos characteristics of non-linear motion of friction pairs are analyzed. The research results indicate that, when the friction pair does not contact, the friction/steel plates move stably and show periodic movement rule; when the friction pair impacts, the friction/steel plates lose stability and show chaotic motion under the action of axial rub-impact force; and with the increase in the flow rate of lubricating oil, the critical rub-impact speed of friction pair climbs, but the rub-impact frequency also grows, resulting in the increase in the drag torque. |
来源
|
兵工学报
,2020,41(7):1270-1279 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2020.07.003
|
关键词
|
湿式离合器
;
流体与固体耦合
;
碰撞摩擦
;
带排转矩
|
地址
|
北京理工大学机械与车辆学院, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6787710
|
参考文献 共
20
共1页
|
1.
Fish R. Using the SAE #2 machine to evaluate wet clutch drag losses.
SAE Transactions,1991,100:1041-1054
|
CSCD被引
1
次
|
|
|
|
2.
杨立昆. 改进的湿式离合器带排转矩模型.
吉林大学学报(工学版),2014,44(5):1270-1275
|
CSCD被引
7
次
|
|
|
|
3.
Pahlovy S. Multiphase drag modeling for prediction of the drag torque characteristics in disengaged wet clutches.
SAE International Journal of Commercial Vehicles,2014,7(2):441-447
|
CSCD被引
4
次
|
|
|
|
4.
Hu J B. Drag Torque Prediction Model for the Wet Clutches.
Chinese Journal of Mechanical Enginee-ring,2009,22(2):238-243
|
CSCD被引
19
次
|
|
|
|
5.
Yuan S H. Experimental Research and Mathematical Model of Drag Torque in Single-plate Wet Clutch.
Chinese Journal of Mechanical Engineering,2011,24(1):91-97
|
CSCD被引
16
次
|
|
|
|
6.
Zhang L. Model for the prediction of drag torque characteristics in wet clutch with radial grooves.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2019,233(12):3043-3056
|
CSCD被引
5
次
|
|
|
|
7.
Yuan S H. Study on aeration for disengaged wet clutches using a two-phase flow model.
Journal of Fluids Engineering,2010,132(11):111304
|
CSCD被引
9
次
|
|
|
|
8.
Ryu J S. Effect of angle and density of grooves between friction plate segments on drag torque in wet clutch of automatic transmission.
Journal of the Korean Society of Tribologists and Lubrication Engineers,2014,30(2):71-76
|
CSCD被引
3
次
|
|
|
|
9.
Ryu J S. Effects of friction plate area and clearance on the drag torque in a wet clutch for an automatic transmission.
Journal of the Korean Society of Tribologists and Lubrication Engineers,2014,30(6):337-342
|
CSCD被引
3
次
|
|
|
|
10.
Mantwill.
Influence on the drag torques of fast-running multi-plate clutches in automatic transmissions,2000
|
CSCD被引
1
次
|
|
|
|
11.
李金.
湿式离合器高转速区振动特性研究,2015
|
CSCD被引
1
次
|
|
|
|
12.
Pahlovy S. Development of an analytical model for prediction of drag torque characteristics of disengaged wet clutches in high speed region.
Proceedings of WCX~(TM) 17: SAE World Congress Experience,2017
|
CSCD被引
1
次
|
|
|
|
13.
Wang P. Statistical modeling of plate clearance distribution for wet clutch drag analysis.
SAE International Journal of Passenger Cars-Mechanical Systems,2018,11(1):76-88
|
CSCD被引
3
次
|
|
|
|
14.
Hou S Y. Experimental investigation on unstable vibration characteristics of plates and drag torque in open multiplate wet clutch at high circumferential speed.
Journal of Fluids Engineering,2017,139(11):111103-111114
|
CSCD被引
4
次
|
|
|
|
15.
Hu J B. Drag torque modeling at high circumferential speed in open wet clutches considering plate wobble and mechanical contact.
Tribology International,2018,124:102-116
|
CSCD被引
7
次
|
|
|
|
16.
Zhang L.
Influences of lubrication flow rates on critical speed of rub-impact at high circumferential velocities
|
CSCD被引
1
次
|
|
|
|
17.
Etsion I. An analysis of mechanical face seal vibrations.
Journal of Lubrication Technology,1981,103(3):428-433
|
CSCD被引
9
次
|
|
|
|
18.
Yu T H. Groove effects on thrust washer lubrication.
Journal of Tribology,2001,123(2):295-304
|
CSCD被引
20
次
|
|
|
|
19.
Papadrakakis M. A Lagrange multiplier solution method for pounding of buildings during earthquakes.
Earthquake Engineering & Structural Dyna-mics,1991,20(11):981-998
|
CSCD被引
11
次
|
|
|
|
20.
Ma Q. Simulation analysis of helical gears in the gear box of the rolling mill.
Proceedings of the 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics,2016:330-333
|
CSCD被引
1
次
|
|
|
|
|