利用皆伐法估算黔中喀斯特森林地上生物量
Aboveground biomass estimate of a karst forest in central Guizhou Province, southwestern China based on direct harvest method
查看参考文献41篇
文摘
|
精确估算森林生物量对理解全球碳循环至关重要。已有的喀斯特森林地上生物量估算研究存在很高的不确定性,缺乏校准数据检验研究结果的精度。利用皆伐法,首次精确估算了我国西南贵州省中部喀斯特森林的地上生物量,并检验了已有生物量回归方程和平均标准木法对该喀斯特森林地上生物量的估算效果。该喀斯特森林的地上生物量为122.81 Mg/hm~2,胸径(D)≥1 cm的木本植物、D<1 cm的木本植物和草本植物的地上生物量分别为120.00、2.56、0.24 Mg/hm~2。D在10—30 cm范围内的植株(83.89 Mg/hm~2)是地上生物量的主要贡献者。4个优势树种(云南鼠刺Itea yunnanensis、川钓樟Lindera pulcherrima、猴樟Cinnamomum bodinieri和化香树Platycarya strobilacea的地上生物量为103.03 Mg/hm~2,占森林总地上生物量的83.89%。干(61.04 Mg/hm~2)和枝(40.56 Mg/hm~2)的生物量远高于皮(11.61 Mg/hm~2)和叶(6.80 Mg/hm~2)。在物种水平上,已有生物量回归方程(误差-56.10%—84.61%)和平均标准木法(误差-36.43%—-5.14%)对该喀斯特森林地上生物量的估算效果均较差。最后,建立了5个新的生物量回归方程。本研究可为我国西南喀斯特地区精确估算森林碳储量提供基础校验数据和方法指导。 |
其他语种文摘
|
Accurate estimate of forest biomass is essential to understand the global carbon cycle. Existing studies on aboveground biomass (AGB) estimate conducted in karst forests present high uncertainties, and no benchmarking and validation data can be used to evaluate their accuracy. In the present study, the AGB of a karst forest in central Guizhou Province, southwestern China, was accurately estimated for the first time on the basis of a clear cutting plot. The performances of existing allometric models and average standard tree method were also tested. The accurate AGB of the karst forest was 122.81 Mg/hm~2. Living woody individuals with diameter at breast height (D) ≥ 1 cm and D < 1 cm and herbs were 120.00 Mg/hm~2, 2.56 Mg/hm~2, and 0.24 Mg/hm~2, respectively. Individuals within 10—30 cm (83.89 Mg/hm~2) D classes were the major AGB contributors. The four dominant species (Itea yunnanensis, Lindera pulcherrima, Cinnamomum bodinieri and Platycarya strobilacea) with 103.03 Mg/hm~2 AGB accounted for 83.89% of the total forest AGB. Stem (61.04 Mg/hm~2) and branch (40.56 Mg/hm~2) exhibited much higher AGB than bark (11.61 Mg/hm~2) and leaf (6.80 Mg/hm~2). Both existing allometric models (bias: -56.10% to 84.61%) and average standard tree method (-36.43% to -5.14%) had low performances indicated by high bias when estimating AGB at species level. Finally, five new local allometric models were developed. These results provide benchmarking data and further guidance for accurate estimate of forest carbon stocks in karst geomorphologies in southwestern China. |
来源
|
生态学报
,2020,40(13):4455-4461 【核心库】
|
DOI
|
10.5846/stxb201906141259
|
关键词
|
地上生物量
;
皆伐法
;
生物量回归方程
;
喀斯特森林
;
碳储量
|
地址
|
1.
浙江师范大学化学与生命科学学院, 金华, 321004
2.
中国科学院普定喀斯特生态系统观测研究站, 中国科学院普定喀斯特生态系统观测研究站, 安顺, 561000
3.
贵州大学林学院, 贵阳, 550025
4.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0933 |
学科
|
林业 |
基金
|
国家自然科学基金面上项目
;
国家重点研发计划项目
;
浙江省自然科学基金/探索项目Q
|
文献收藏号
|
CSCD:6770692
|
参考文献 共
41
共3页
|
1.
Dixon R K. Carbon pools and flux of global forest ecosystem.
Science,1994,263(5144):185-190
|
CSCD被引
919
次
|
|
|
|
2.
Kindermann G E. A global forest growing stock, biomass and carbon map based on FAO statistics.
Silva Fennica,2008,42(3):387-396
|
CSCD被引
17
次
|
|
|
|
3.
Pan Y D. A large and persistent carbon sink in the world's forests.
Science,2011,333(6045):988-993
|
CSCD被引
589
次
|
|
|
|
4.
Pan Y D. The structure, distribution, and biomass of the world's forests.
Annual Review of Ecology,Evolution, and Systematics,2013,44:593-622
|
CSCD被引
55
次
|
|
|
|
5.
FAO.
Global Forest Resources Assessment 2015. How are the World's Forests Changing?,2015
|
CSCD被引
1
次
|
|
|
|
6.
Landsberg J J. A generalized model of forest productivity using simplified concepts of radiation-used efficiency, carbon balance and partitioning.
Forest Ecology and Management,1997,95(3):209-228
|
CSCD被引
70
次
|
|
|
|
7.
Malhi Y. An international network to monitor the structure,composition and dynamics of Amazonian forests (RAINFOR).
Journal of Vegetation Science,2002,13:439-450
|
CSCD被引
6
次
|
|
|
|
8.
Saatchi S S. Benchmark map of forest carbon stocks in tropical regions across three continents.
PNAS,2011,108(24):9899-9904
|
CSCD被引
65
次
|
|
|
|
9.
Ningthoujam R K. Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data.
International Journal of Applied Earth Observation and Geoinformation,2018,69:206-216
|
CSCD被引
2
次
|
|
|
|
10.
Baskerville G L. Estimation of dry weight of tree components and total standing crop in conifer stands.
Ecology,1965,46:867-869
|
CSCD被引
5
次
|
|
|
|
11.
李意德. 尖峰岭热带山地雨林生物量的初步研究.
植物生态学与地植物学学报,1992,16(4):293-300
|
CSCD被引
30
次
|
|
|
|
12.
Ketterings Q M. Reducing uncertainty in the use of allometric biomass equations for predicting aboveground biomass in mixed secondary forests.
Forest Ecology and Management,2001,146:199-209
|
CSCD被引
77
次
|
|
|
|
13.
罗云建.
中国森林生态系统生物量及其分配研究,2013
|
CSCD被引
16
次
|
|
|
|
14.
Scurlock J M O. Terrestrial NPP: Towards a consistent data set for global model evaluation.
Ecological Applications,1999,9(3):913-919
|
CSCD被引
36
次
|
|
|
|
15.
Ni J. Net primary productivity in forests of China: Scaling-up of national inventory data and comparison with model predictions.
Forest Ecology and Management,2003,187:485-495
|
CSCD被引
28
次
|
|
|
|
16.
王世杰. 喀斯特石漠化的形成背景、演化与治理.
第四纪研究,2003,23(6):657-666
|
CSCD被引
197
次
|
|
|
|
17.
Jiang Z C. Rocky desertification in Southwest China: Impacts, causes, and restoration.
Earth-Science Reviews,2014,132:1-12
|
CSCD被引
229
次
|
|
|
|
18.
杨汉奎. 贵州茂兰喀斯特森林群落生物量研究.
生态学报,1991,11(4):307-312
|
CSCD被引
44
次
|
|
|
|
19.
朱守谦. 茂兰喀斯特森林生物量构成初步研究.
植物生态学报,1995,19(4):358-367
|
CSCD被引
43
次
|
|
|
|
20.
喻理飞. 退化喀斯特森林自然恢复过程中群落动态研究.
林业科学,2002,38(1):1-7
|
CSCD被引
120
次
|
|
|
|
|