自适应分解式多目标粒子群优化算法
Adaptive Multiobjective Particle Swarm Optimization Based on Decomposition Archive
查看参考文献26篇
文摘
|
为了提高多目标粒子群优化算法解的分布性,文中提出了一种自适应分解式多目标粒子群优化算法(Adaptive Multiobjective Particle Swarm Optimization based on Decomposed Archive,AMOPSO-DA).首先,设计了一种基于优化解空间分布信息的外部档案更新策略,有效提升了AMOPSO-DA的空间搜索能力;其次,提出了一种基于粒子进化方向信息的飞行参数调整方法,有效平衡了AMOPSO-DA的探索和开发能力.最后,将提出的AMOPSO-DA应用于多目标优化问题,实验结果表明,文中提出的AMOPSO-DA能够获得分布性较好的优化解. |
其他语种文摘
|
To improve the distribution performance of multiobjective particle swarm optimization algorithm,an adaptive multiobjective particle swarm optimization algorithm,based on the decomposed archive,named AMOPSO-DA,is developed in this paper.First,an external archive update strategy,based on the spatial distribution information of optimal solutions,is designed to improve the searching ability of AMOPSO-DA.Second,an adaptive flying parameter adjustment strategy,based on the evolutionary direction information of each particle,is proposed to balance the exploration ability and the exploitation ability.Finally,this proposed AMOPSO-DA is applied to some multiobjective optimization problems.The experiment results demonstrate that AMOPSO-DA can obtain well-distributed optimal solutions. |
来源
|
电子学报
,2020,48(7):1245-1254 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.07.001
|
关键词
|
多目标粒子群优化算法
;
分解
;
外部档案
;
分布性
;
自适应
|
地址
|
1.
北京工业大学信息学部, 北京, 100124
2.
计算智能与智能系统北京市重点实验室, 计算智能与智能系统北京市重点实验室, 北京, 100124
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
国家重点研发计划
;
北京高校卓越青年科学家项目
;
北京市朝阳区协同创新
|
文献收藏号
|
CSCD:6770190
|
参考文献 共
26
共2页
|
1.
黎明. 基于类圆映射的高维多目标可视化方法.
电子学报,2019,47(6):1185-1193
|
CSCD被引
2
次
|
|
|
|
2.
严峻坤. 基于机会约束的MIMO雷达多波束稳健功率分配算法.
电子学报,2019,47(6):1230-1235
|
CSCD被引
1
次
|
|
|
|
3.
张磊. 基于重新匹配策略的ε 约束多目标分解优化算法.
电子学报,2018,46(5):1032-1040
|
CSCD被引
9
次
|
|
|
|
4.
Zhao S Z. Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization.
Information Sciences,2011,181(16):3323-3335
|
CSCD被引
1
次
|
|
|
|
5.
Hu W. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system.
IEEE Transactions on Evolutionary Computation,2013,19(1):1-18
|
CSCD被引
2
次
|
|
|
|
6.
Yue C T. A multiobjective particle swarm optimization using ring topology for solving multimodal multiobjective problems.
IEEE Transactions on Evolutionary Computation,2018,22(5):805-817
|
CSCD被引
21
次
|
|
|
|
7.
Hu M. An adaptive particle swarm optimization with multiple adaptive methods.
IEEE Transactions on Evolutionary Computation,2012,17(5):705-720
|
CSCD被引
1
次
|
|
|
|
8.
刘兆广. 一种快速收敛的非参数粒子群优化算法及其收敛性分析.
电子学报,2018,46(7):1669-1674
|
CSCD被引
2
次
|
|
|
|
9.
Daneshyari M. Cultural-based multiobjective particle swarm optimization.
IEEE Transactions on Systems,Man and Cybernetics,2011,41(2):553-568
|
CSCD被引
11
次
|
|
|
|
10.
Chen W N. Particle swarm optimization with an aging leader and challengers.
IEEE Transactions on Evolutionary Computation,2012,17(2):241-258
|
CSCD被引
5
次
|
|
|
|
11.
Sierra M R. Multi-objective particle swarm optimizers:A survey of the state-of-the-art.
International Journal of Computational Intelligence Research,2012,42(2):287-308
|
CSCD被引
1
次
|
|
|
|
12.
Almoubayed N. D2-MOPSO:MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution.
Evolutionary Computation,2014,22(1):47-77
|
CSCD被引
14
次
|
|
|
|
13.
Coello C A C. Handling multiple objectives with particle swarm optimization.
IEEE Transactions on Evolutionary Computation,2004,8(3):256-279
|
CSCD被引
482
次
|
|
|
|
14.
Han H G. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods.
IEEE Transactions on Cybernetic,2017,47(9):2754-2767
|
CSCD被引
13
次
|
|
|
|
15.
Zhang Y. A decomposition-based archiving approach for multi-objective evolutionary optimization.
Information Sciences,2018,430(5):397-413
|
CSCD被引
4
次
|
|
|
|
16.
Lin Q. A novel multi-objective particle swarm optimization with multiple search strategies.
European Journal of Operational Research,2015,247(3):732-744
|
CSCD被引
17
次
|
|
|
|
17.
Hu Z Y. Multi-objective particle swarm optimization algorithm based on leader combination of decomposition and dominance.
Journal of Intelligent & Fuzzy Systems,2017,33(3):1577-1588
|
CSCD被引
1
次
|
|
|
|
18.
Dai C. A new multi-objective particle swarm optimization algorithm based on decomposition.
Information Science,2015,325(20):541-557
|
CSCD被引
19
次
|
|
|
|
19.
Cai X. An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization.
IEEE Transactions on Evolutionary Computation,2014,19(4):508-523
|
CSCD被引
2
次
|
|
|
|
20.
Trivedi A. A survey of multiobjective evolutionary algorithms based on decomposition.
IEEE Transactions on Evolutionary Computation,2016,21(3):440-462
|
CSCD被引
3
次
|
|
|
|
|