传感网中基于压缩感知的丢包匹配数据收集算法
CS-MDGA:A Packet Loss Matching Data Gathering Algorithm in Sensor Networks Based on Compressive Sensing
查看参考文献19篇
文摘
|
为了提高传感网中数据重构精度以及降低不可靠链路丢包对压缩感知(Compressive Sensing,CS)数据收集的影响,本文提出了一种基于压缩感知丢包匹配数据收集算法(Packet Loss Matching Data Gathering Algorithm Based on Compressive Sensing,CS-MDGA).本文算法通过压缩感知技术构建了全网数据间的"关联效应",并设计了基于丢包匹配的稀疏观测矩阵(Sparse Observation Matrix Based on Packet Loss Matching,SPLM),证明了该观测矩阵概率趋近于"1"时,满足的等距约束条件(Restricted Isometry Pro perty,RIP),完成了节点间多路径路由数据的可靠交付.仿真实验结果表明,本文算法在链路丢包率为60%情况下,相对重构误差仍小于5%,验证了本文算法不仅具有较高的重构精度,而且还可以有效缓解不可靠链路丢包对CS数据收集的影响. |
其他语种文摘
|
In order to improve the data reconstruction accuracy and alleviate the influence of packet loss over unreliable links on the Compressive Sensing(CS)data gathering in sensor networks,we propose a Packet Loss Matching Data Gathering Algorithm Based on Compressive Sensing(CS-MDGA)in this paper.This proposed algorithm establishes the correlation effect of the network data with the CS technique.We further design the Sparse Observation Matrix based on Packet Loss Matching(SPLM)in this paper.In addition,we prove that the designed observation matrix satisfies the Restricted Isometry Property(RIP)with a probability arbitrarily close to 1,which can guarantee the reliable delivery of the multi-path routing data among different nodes.The simulation results show that the relative reconstruction error of this proposed algorithm is still lower than 5% even when the packet loss rate of the link is as high as 60%.Therefore,it is verified that this proposed algorithm not only exhibits high reconstruction accuracy,but also effectively alleviates the influence of packet losses over unreliable links on the CS-based data collection. |
来源
|
电子学报
,2020,48(4):723-733 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.04.014
|
关键词
|
传感网
;
压缩感知
;
数据收集
;
关联效应
;
稀疏观测矩阵
|
地址
|
洛阳理工学院计算机与信息工程学院, 河南, 洛阳, 471023
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
河南省教育厅高等学校青年骨干教师培养计划
;
河南省教育厅重点项目资助计划
;
河南省科技厅科技攻关计划
;
洛阳理工学院高层人才资助计划
|
文献收藏号
|
CSCD:6770124
|
参考文献 共
19
共1页
|
1.
和志杰. 视频压缩感知中基于结构相似的帧间组稀疏表示重构算法研究.
电子学报,2018,46(3):544-543
|
CSCD被引
17
次
|
|
|
|
2.
Bhowmik S. Convoy tree based fuzzy target tracking in wireless sensor netw orks.
International Journal of Wireless Information Networks,2017,24(4):476-484
|
CSCD被引
4
次
|
|
|
|
3.
刘洲洲. 采用压缩感知和GM(1,1)的无线传感器网络异常检测方法.
西安交通大学学报,2017,51(2):40-46
|
CSCD被引
3
次
|
|
|
|
4.
Yu Xiaohan. Joint routing and scheduling for data collection with comp ressive sensing to achieve order-optimal latency.
International Journal of Distributed Sensor Networks,2017,13(10):1-13
|
CSCD被引
1
次
|
|
|
|
5.
Zhou Fen. Maximizing lifetime of data-gathering tree with different aggregation modes in WSNs.
IEEE Sensors Journal,2016,16(22):8167-8177
|
CSCD被引
1
次
|
|
|
|
6.
Singh V K. Compressed sensing based acoustic event detection in protected area networks with wireless multimedia sensor.
Multimedia Tools an d Applications,2017,76(18):18531-18555
|
CSCD被引
1
次
|
|
|
|
7.
Chen Wei. Cost-aware activity scheduling for compressive sleeping wi reless sensor networks.
IEEE Transactions on Signal Processing,2016,64(9):2314-2323
|
CSCD被引
2
次
|
|
|
|
8.
Misra P. Sparsity based efficient cross-correlation techniques in sensor networks.
IEEE Transactions on Mobile Computing,2017,16(7):2037-2050
|
CSCD被引
1
次
|
|
|
|
9.
Wu Liantao. Sparse signal aloha:A compressive sensing-ba sed method for uncoordinated multiple access.
IEEE Communications Letters,2017,21(6):1301-1304
|
CSCD被引
2
次
|
|
|
|
10.
张策. 不可靠链路下基于压缩感知的WSN数据收集算法.
通信学报,2016,37(9):131-141
|
CSCD被引
10
次
|
|
|
|
11.
Talari A. CStorage:decentralized compressive data storage in wireless sensor networks.
Ad Hoc Networks,2016,37:475-485
|
CSCD被引
3
次
|
|
|
|
12.
Luo Chong. Compressive data gathering for large-scale wireless sensor networks.
The 15th Annual ACM International Conference on Mobile Computing and Networking,2009:145-156
|
CSCD被引
1
次
|
|
|
|
13.
Wu Xuangou. Compressive sensing meets unreliable li nk:sparsest random scheduling for compressive data gathering in lossy WSNs.
The 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing,2014:13-22
|
CSCD被引
1
次
|
|
|
|
14.
韩哲. 面向有损链路的传感网压缩感知数据收集算法.
软件学报,2017,28(12):3257-3273
|
CSCD被引
2
次
|
|
|
|
15.
Xiao Xue. Efficient measurement method for spatiotemporal comp ressive data gathering in wireless sensor networks.
KSII Transactions on Int ernet and Information Systems,2018,12(4):1618-1637
|
CSCD被引
2
次
|
|
|
|
16.
裴立业. 一种基于能量的压缩感知稀疏度估计算法.
电子学报,2017,45(2):285-290
|
CSCD被引
2
次
|
|
|
|
17.
Azarnia G. Cooperative and distributed algorithm for compre ssed sensing recovery in WSNs.
IET Signal Processing,2018,12(3):346-357
|
CSCD被引
2
次
|
|
|
|
18.
徐佳. 最大化最小能耗概率的移动Sink无线传感器网络数据收集方法.
电子学报,2015,43(12):2470-2475
|
CSCD被引
7
次
|
|
|
|
19.
杨浩. 基于区域化压缩感知的无线传感器网络数据收集方法.
计算机学报,2017,40(8):1933-1946
|
CSCD被引
9
次
|
|
|
|
|