原子力显微镜的生物力学实验方法和研究进展
Experimental methods and recent progress in biomechanics using atomic force microscopy
查看参考文献52篇
文摘
|
作为微纳尺度的力学工具,原子力显微镜技术被越来越多地应用于生物力学实验研究,推动了该交叉学科领域的发展。利用多种测量模式与改进的探针,原子力显微镜可以在液体中对亚细胞、细胞、组织等多个尺度的生命物质进行力学测量,研究其在衰老、癌变等生命过程中力学性质的动态变化。本文综述了原子力显微镜的力学测量原理、生物力学的实验方法,以及在单细胞的整体与局部、液-液相分离液滴、上皮囊泡组织等力学测量中的应用,分析了复杂流体与微纳尺度流动对实验测量的影响,并对该领域的发展进行了展望。 |
其他语种文摘
|
As a micro-and nano-scale mechanical tool,Atomic Force Microscopy(AFM)is increasingly used in the experimental study of the biomechanics and promotes the further development of this interdisciplinary field.Using a variety of operation modes and modified probes,the AFM can carry out mechanical measurements on living matter at multiple scales,from subcellular structures to living cells and tissues.It can be used to study variations of the mechanical properties during different living processes,such as aging and cancerization.In this article,we will review the working principle of AFM,its experimental implementations in biomechanical measurements,and the applications of the AFM in the study of the mechanical properties of the whole cell and local variations,liquid-liquid phase-separated droplets,and epithelial cysts.We also analyze the effects of complex fluids and micro-and nano-scale flows on the AFM measurements,and make an outlook on the development of this field. |
来源
|
实验流体力学
,2020,34(2):57-66 【核心库】
|
DOI
|
10.11729/syltlx20200026
|
关键词
|
原子力显微镜
;
生物力学
;
微纳流动
;
弹性模量
;
软物质
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
2.
香港科技大学物理系, 香港
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1672-9897 |
学科
|
力学 |
基金
|
国家自然科学基金
;
中国科学院率先行动“百人计划”资助
|
文献收藏号
|
CSCD:6767795
|
参考文献 共
52
共3页
|
1.
Ingber D E. Tensegrity:The architectural basis of cellular mechanotransduction.
Annual Review of Physiology,1997,59(1):575-599
|
CSCD被引
29
次
|
|
|
|
2.
Vogel V. Local force and geometry sensing regulate cell functions.
Nature Reviews Molecular Cell Biology,2006,7(4):265-275
|
CSCD被引
39
次
|
|
|
|
3.
Janmey P A. Cell Mechanics:Integrating cell responses to mechanical stimuli.
Annual Review of Biomedical Engineering,2007,9(1):1-34
|
CSCD被引
25
次
|
|
|
|
4.
Kasza K E. The cell as a material.
Current Opinion in Cell Biology,2007,19(1):101-107
|
CSCD被引
7
次
|
|
|
|
5.
Moeendarbary E. Cell mechanics: principles,practices,and prospects.
Wiley Interdisciplinary Reviews:Systems Biology and Medicine,2014,6(5):371-388
|
CSCD被引
4
次
|
|
|
|
6.
Fletcher D A. Cell mechanics and the cytoskeleton.
Nature,2010,463(7280):485-492
|
CSCD被引
78
次
|
|
|
|
7.
Chen D T. Rheological microscopy:local mechanical properties from microrheology.
Physical Review Letters,2003,90(10):108301
|
CSCD被引
1
次
|
|
|
|
8.
Lekka M. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy.
European Biophysics Journal,1999,28(4):312-316
|
CSCD被引
17
次
|
|
|
|
9.
Nagayama M. Drastic change of local stiffness distribution correlating to cell migration in living fibroblasts.
Cell Motility and the Cytoskeleton,2001,50(4):173-179
|
CSCD被引
5
次
|
|
|
|
10.
Girard P P. Cellular chemomechanics at interfaces:sensing,integration and response.
Soft Matter,2007,3(3):307
|
CSCD被引
3
次
|
|
|
|
11.
Hochmuth R M. Micropipette aspiration of living cells.
Journal of Biomechanics,2000,33(1):15-22
|
CSCD被引
27
次
|
|
|
|
12.
Sanchez D. Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette.
Biophysical Journal,2008,95(6):3017-3027
|
CSCD被引
5
次
|
|
|
|
13.
Moeendarbary E. The cytoplasm of living cells behaves as a poroelastic material.
Nature Materials,2013,12(3):253-261
|
CSCD被引
14
次
|
|
|
|
14.
Amblard F. Subdiffusion and anomalous local viscoelasticity in actin networks.
Physical Review Letters,1996,77(21):4470-4473
|
CSCD被引
5
次
|
|
|
|
15.
Dai J W. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers.
Biophysical Journal,1995,68(3):988-996
|
CSCD被引
4
次
|
|
|
|
16.
Hoffman B D. The consensus mechanics of cultured mammalian cells.
Proceedings of the National Academy of Sciences of the United States of America,2006,103(27):10259-10264
|
CSCD被引
6
次
|
|
|
|
17.
Muller D J. Atomic force microscopy:a nanoscopic window on the cell surface.
Trends in Cell Biology,2011,21(8):461-469
|
CSCD被引
20
次
|
|
|
|
18.
Sokolov I. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments.
Methods,2013,60(2):202-213
|
CSCD被引
3
次
|
|
|
|
19.
Stewart M P. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding.
Nature,2011,469(7329):226-230
|
CSCD被引
8
次
|
|
|
|
20.
Fischer-Friedrich E. Rheology of the active cell cortex in mitosis.
Biophysical Journal,2016,111(3):589-600
|
CSCD被引
3
次
|
|
|
|
|