斯里兰卡近海海洋生态环境变化遥感监测分析
Remote Sensing Monitoring and Variation Analysis of Marine Ecological Environment in Coastal Waters of Sri Lanka
查看参考文献35篇
文摘
|
斯里兰卡是海上丝绸之路沿线重要的节点国家,其周边海域生态环境变化与经济发展、休闲生活和食品安全密切相关。利用2002-2017年的MODIS遥感反演产品对斯里兰卡岛周边海域、关键节点港口科伦坡的生态环境参数年际变化规律分别进行分析和2003-2012年的MERIS遥感反射率产品对保克海峡进行水体类型时空分析,结论如下:①研究区内光合作用有效辐射高值出现在马纳尔湾,海域沿岸浮游植物生物量相对较高,与海表温度负相关,外海浮游植物生物量极低,与透明度负相关。②科伦坡港附近水温(海表温度)、海面光照强度(光合作用有效辐射)、水体清洁度(海水透明度)、海洋食物网基础的浮游植物生物量(叶绿素浓度)和浮游植物净初级生产力最大值分别出现在4月、3月、3月、8月、7月,致灾因素重点关注8月潜在的赤潮。③保克海峡浑浊带的源头是印度的卡里梅尔角,由高韦里河携带大量泥沙造成。这有助于了解和认识高时空变化的保克海峡及斯里兰卡周边海域在不同时间-空间的海洋生态环境。 |
其他语种文摘
|
Sri Lanka is an important node country along China's Maritime Silk Road. The changes in the ecological environment of its surrounding sea areas are closely related to its economic development, leisure life and dietary safety. This study analyzed Sri Lanka's surrounding waters and Colombo as a key node port from 2002 to 2017 using MODIS remote sensing products to characterize the interannual variations of ecological environment parameters. The MERIS remote sensing reflectance products were used to analyze the spatial and temporal characteristics of water bodies in the Palk Strait (2003-2012). Conclusions can be made as the following statements: (1) Within the study area, photosynthetically active radiation was observed higher value in Gulf of Mannar. The biomass of phytoplankton is relatively high in the coastal areas and inversely related to the sea surface temperature, while that in the open sea is extremely low and inversely related to seawater transparency.(2) In Colombo Port, the maximum values month of sea surface temperature, light intensity (photosynthetically active radiation), water cleanliness (seawater transparency), phytoplankton biomass and net primary phytoplankton productivity appear in April, March, March, August and July respectively, and the red tide, as a potential disaster causing factor, needs to be concerned in August.(3) The sources of the turbidity zone in the Palk Strait were the large amounts of sediment carried by the Cauvery River from Calimere cape of India. The distribution characteristics and long-term changing trends were analyzed, which provided a better understanding of the high temporal and spatial variations in the marine ecological environment of the Palk Strait and the surrounding waters of Sri Lanka in different time and space. |
来源
|
地球信息科学学报
,2020,22(7):1463-1475 【核心库】
|
DOI
|
10.12082/dqxxkx.2020.190677
|
关键词
|
斯里兰卡
;
海上丝绸之路
;
海洋生态环境
;
遥感监测
;
科伦坡
;
保克海峡
;
水体类型
;
时空变化
|
地址
|
1.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
2.
天津中科无人机应用研究院, 天津, 301800
3.
中国科学院中国-斯里兰卡水技术研究与示范联合中心, 中国-斯里兰卡水技术研究与示范联合中心, 北京, 100085
4.
中国科学院无人机应用与管控研究中心, 北京, 100101
5.
自然资源部第二海洋研究所, 卫星海洋环境动力学国家重点实验室, 杭州, 310012
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
环境质量评价与环境监测 |
基金
|
中国科学院战略性先导科技专项
;
国家自然科学基金面上项目
;
天津科技计划项目智能制造专项
|
文献收藏号
|
CSCD:6767550
|
参考文献 共
35
共2页
|
1.
Robinson I S. Remote sensing of shelf sea ecosystems-State of the art and perspective.
European Science Foundation Marine Board: Ostend. 12,2008:1-18
|
CSCD被引
1
次
|
|
|
|
2.
.
《关于推进绿色"一带一路"建设的指导意见》(环境保护部、外交部、发展改革委、商务部联合发布),2018
|
CSCD被引
1
次
|
|
|
|
3.
Sathyendranath S.
Phytoplankton Functional Types from Space. Reports of the International Ocean-Colour Coordinating Group, No.15, IOCCG, Dartmouth, Canada,2014
|
CSCD被引
1
次
|
|
|
|
4.
Ibarbalz F M. Global Trends in Marine Plankton Diversity across Kingdoms of Life.
Cell,2019,179:1084-1097
|
CSCD被引
4
次
|
|
|
|
5.
Blondeau-Patissier D. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans.
Progress In Oceanography,2014,123:123-144
|
CSCD被引
16
次
|
|
|
|
6.
Greb S.
Earth Observations in Support of Global Water Quality Monitoring.IOCCG Report Series, No. 17,2018
|
CSCD被引
1
次
|
|
|
|
7.
Kirk J T O.
Light and Photosynthesis in Aquatic Ecosystems,2010:1-95
|
CSCD被引
1
次
|
|
|
|
8.
Burtt P. Rainfall distributions in Sri Lanka in time and space: An analysis based on daily rainfall data.
Climate,2014,2:242-263
|
CSCD被引
5
次
|
|
|
|
9.
Zubair L. Modulation of Sri Lankan Maha rainfall by the Indian Ocean Dipole.
Geophysical Research Letters,2003,35:1-4
|
CSCD被引
1
次
|
|
|
|
10.
Behrenfeld M J. Revaluating ocean warming impacts on global phytoplankton.
Nature Climate Change,2016,6:323-330
|
CSCD被引
5
次
|
|
|
|
11.
Frouin R. A time series of photosynthetically available radiation at the ocean surface from Sea WiFS and MODIS data.
Proceedings Of SPIE. 852519,2012:1-112
|
CSCD被引
1
次
|
|
|
|
12.
何贤强. 中国海透明度卫星遥感监测.
中国工程科学,2004,6(9):33-37
|
CSCD被引
13
次
|
|
|
|
13.
Behrenfeld M J. A consumer's guide to phytoplankton primary productivity models.
Limnology and Oceanography,1997,42:1479-1491
|
CSCD被引
28
次
|
|
|
|
14.
Valente A. A compilation of global bio-optical in situ data for ocean colour satellite applications-version two.
Earth System Science Data,2019,11:1037-1068
|
CSCD被引
1
次
|
|
|
|
15.
O'reilly J E. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6.
Remote Sensing Environment,2019,7229:32-47
|
CSCD被引
10
次
|
|
|
|
16.
Madhubhashini Elepathage T S. Hydro-climatic variations analysis with remote sensing data on Sri Lankan ocean waters.
Journal of Marine Biology & Oceanography,2019,8:1-12
|
CSCD被引
1
次
|
|
|
|
17.
Vinayachandran P N. Phytoplankton bloom in the Bay of Bengal during the northeast monsoon and its intensification by cyclones.
Geophysical Research Letters,2003,30(11):1572
|
CSCD被引
6
次
|
|
|
|
18.
Ye H P. Spectral classification of the Yellow Sea and implications for coastal ocean color remote sensing.
Remote Sensing,2016,8(4):1-23
|
CSCD被引
2
次
|
|
|
|
19.
Chisholm Hugh.
Palk Straits. Encyclop dia Britannica. 20 (11th ed.),2019:635
|
CSCD被引
1
次
|
|
|
|
20.
Clift P D.
The Asian Monsoon: Causes, History and Effects,2008
|
CSCD被引
11
次
|
|
|
|
|