Oxygen-sulfur Co-substitutional Fe@C nanocapsules for improving microwave absorption properties
硫氧元素共掺杂提升Fe@C纳米胶囊微波吸收性能
查看参考文献59篇
文摘
|
Heteroatom substitution has been investigated to be a feasible way to optimize microwave absorption properties of core-shell structural nanocapsules at gigahertz.Although dielectric capacity has been increased at specific frequency with substituted absorbents,its broadband absorption performance is still relatively poor ascribed to the low dipole oscillation amplitude of single substituted heteroatom.In this study we demonstrate that sulfur and oxygen co-substituted heterostructure leads to high microwave absorption property of core-shell structural Fe@C nanocapsules at broadened frequency range,comparable to the single sulfur substitutional Fe@C nanocapsules.Experimental characterizations coupled with first-principles calculations reveal that the microwave absorption enhancement is triggered by the sulfur-oxygen co-substitution,which results in the serious symmetry breaking and thus leads to the charge separation at the co-substituted area.In particular,the nanocapsules exhibt the minimum reflection loss capcacity R(dB)of-52 dB at 6.8 GHz and the bandwith for R(dB)<-20 dB is in the frequency range of 3.1-12.7 GHz.The present study not only offers a deep insight into the relationship between heteroatom and microwave absorption property,but also puts forward a mentality for further designing microwave absorbents. |
其他语种文摘
|
伴随着电子信息行业的迅猛发展,高频段电磁波由于其信息容量大成为了电子通讯领域的重要载体.但是,其所导致的电磁波污染以及电磁干扰问题已经大大影响了人们的生活和相关设备运行.而异质结构由于其空间不对称性,可以诱发形成电偶极子,已经被报道可以有效地提升材料的微波吸收性能.本文通过空气气氛下退火处理,以硫元素掺杂Fe@C纳米胶囊为基础,制备了具有异质硫元素和氧元素共同掺杂的Fe@C纳米胶囊材料.XPS分析发现掺杂结构主要由-C-S-C-、-C=S-、-C-SO-以及-C-SO_2-四种结构组成.电磁响应测试结合第一性原理计算模拟发现,C-S-O异质掺杂结构有着所有异质掺杂结构中最高的电偶极子偶极矩,在外部电磁场的作用下,相较于硫元素掺杂异质结构,上述共掺杂异质结构将会产生更加强烈的极化震荡,并在宏观上体现为介电损耗性能的提升和微波吸收性能的增长. |
来源
|
Science Bulletin
,2020,65(8):623-630 【核心库】
|
DOI
|
10.1016/j.scib.2020.01.009
|
关键词
|
Microwave absorption
;
Electric-dipole
;
Substitution
;
Core@shell
;
Sulfur-oxygen doped
|
地址
|
1.
School of Materials Science and Engineering, Northeastern University, Key Laboratory for Anisotropy and Texture of Materials(MOE), Shenyang, 110819
2.
Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2095-9273 |
学科
|
物理学;环境污染及其防治 |
基金
|
国家自然科学基金
;
the Fundamental Research Funds for the Central Universities
;
浙江省自然科学基金
;
the National 1000-Plan for Young Scholars
;
the Start-Up Funding Supported from the Northeastern University of China
|
文献收藏号
|
CSCD:6763614
|
参考文献 共
59
共3页
|
1.
Guo J. Topological defects: origin of nanopores and enhanced adsorption performance in nanoporous carbon.
Small,2012,8:3283-3288
|
CSCD被引
9
次
|
|
|
|
2.
Rosseinsky A F. Superconductivity at 18 K in potassium-doped C_(60).
Nature,1991,350:600
|
CSCD被引
47
次
|
|
|
|
3.
Krivanek O L. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy.
Nature,2010,464:571-574
|
CSCD被引
43
次
|
|
|
|
4.
Zhang X F. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules.
J Phys D Appl Phys,2007,40:175383
|
CSCD被引
1
次
|
|
|
|
5.
Zhang X F. Microwave absorption properties of the carbon-coated nickel nanocapsules.
Appl Phys Lett,2006,89:3115
|
CSCD被引
2
次
|
|
|
|
6.
Che R C. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes.
Adv Mater,2004,16:401-405
|
CSCD被引
200
次
|
|
|
|
7.
Zhang X F. Core/shell metal/heterogeneous oxide nanocapsules: the empirical formation law and tunable electromagnetic losses.
J Phys Chem C,2013,117:8563-8569
|
CSCD被引
5
次
|
|
|
|
8.
Zhang X F. High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz.
ACS Appl Mater Interfaces,2016,8:3494-3498
|
CSCD被引
14
次
|
|
|
|
9.
Liu D. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption.
J Colloid Interf Sci,2018,514:10-20
|
CSCD被引
22
次
|
|
|
|
10.
Xu Z. Pea-like Fe/Fe_3C nanoparticles embedded in nitrogendoped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption.
ACS Appl Mater Interfaces,2019,11:4268-4277
|
CSCD被引
23
次
|
|
|
|
11.
Liu D. Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties.
J Mater Chem C,2018,6:9615-9623
|
CSCD被引
18
次
|
|
|
|
12.
Liu D. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption.
J Mater Chem C,2019,7:5037-5046
|
CSCD被引
35
次
|
|
|
|
13.
Du Y. Shell thickness-dependent microwave absorption of core-shell Fe_3O_4@C composites.
ACS Appl Mater Interface,2014,6:12997-13006
|
CSCD被引
71
次
|
|
|
|
14.
Kortan A R. Superconductivity at 8.4 K in calciumdoped C_(60).
Nature,1992,355:529
|
CSCD被引
2
次
|
|
|
|
15.
Wu J B. Giant dielectric permittivity observed in Li and Ti doped NiO.
Phys Rev Lett,2002,89:217601
|
CSCD被引
23
次
|
|
|
|
16.
Zhu Y. Nanoscale disorder in CaCu_3Ti_4O_(12): a new route to the enhanced dielectric response.
Phys Rev Lett,2007,99:037602
|
CSCD被引
8
次
|
|
|
|
17.
Jana D. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes.
Prog Mater Sci,2013,58:565-635
|
CSCD被引
9
次
|
|
|
|
18.
Zhang X F. Gigahertz dielectric polarization of substitutional single niobium atoms in defective graphitic layers.
Phys Rev Lett,2015,115:147601
|
CSCD被引
5
次
|
|
|
|
19.
Li Y X. Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies.
Carbon,2018,126:372-381
|
CSCD被引
16
次
|
|
|
|
20.
Li Y X. Improved microwave absorption properties by atomic-scale substitutions.
Carbon,2018,139:181-188
|
CSCD被引
10
次
|
|
|
|
|