内生晶体非晶合金复合材料变形场演化与剪切带行为
Deformation field evolution and shear banding of an in-situ crystal reinforced amorphous alloy composite
查看参考文献38篇
文摘
|
通过数字图像相关方法从实验上观察到内生晶体复合材料在微米尺度应变场的演化与剪切带行为,并结合有限元,模拟了非晶合金复合材料的变形,给出了应力应变场的分布,分析了两相在变形中的作用.实验与有限元结果表明,在宏观弹性段内,晶体相会优先发生塑性变形,而后在界面形成应变集中,逐渐向周围扩展;随着加载的进行,材料内部形成变形局部化剪切带.非晶合金复合材料的塑性变形主要由剪切带贡献,而晶体相的存在促进了多重剪切带的形成;复合材料的载荷则主要由连续的非晶基体相承担,剪切带形成伴随自由体积的快速增加,导致非晶基体流动应力下降,复合材料承载能力降低. |
其他语种文摘
|
The strain field and shear band behaviors of an in-situ crystal reinfored amorphous alloy composite at microscale were experimentally characterized by digital image correlation method.Combined with the finite element analysis,the deformation of the amorphous alloy composite was simulated,and the evolution of stress and strain fields was given out.The role of each phase during the deformation was analysed.The results show that in the macroscopically elastic range,the crystal phase first deformed plastically,then strain concentration formed at the phase interface,and gradually expanded to the surrounding.As the applied strain increased,strain localization occured inside the material.It is found that,the plastic deformation of the composites is accommodated by shear bands,and the presence of crystal phase in the amorphous alloy composite promotes the formation of multiple shear bands.The load of the composite is mainly sustained by the continuous amorphous matrix,and the shear band forms along with a rapid increase of free volume,which leads to a decrease of flow stress and subsequent a reduced loadbearing capacity of the composite. |
来源
|
中国科学. 物理学
, 力学, 天文学,2020,50(6):067006 【核心库】
|
DOI
|
10.1360/SSPMA-2019-0317
|
关键词
|
非晶复合材料
;
数字图像相关
;
塑性变形
;
应变场
;
剪切带
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7275 |
学科
|
一般工业技术;自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
中国科学院前沿科学重点研究计划
;
中国科学院战略性先导科技专项
;
科学挑战专题基金项目
;
北京理工大学爆炸科学与技术国家重点实验室基金
|
文献收藏号
|
CSCD:6763020
|
参考文献 共
38
共2页
|
1.
汪卫华. 非晶态物质的本质和特性.
物理学进展,2013,5:177-351
|
CSCD被引
177
次
|
|
|
|
2.
Schuh C. Mechanical behavior of amorphous alloys.
Acta Mater,2007,55:4067-4109
|
CSCD被引
251
次
|
|
|
|
3.
Trexler M M. Mechanical properties of bulk metallic glasses.
Prog Mater Sci,2010,55:759-839
|
CSCD被引
79
次
|
|
|
|
4.
Wang W H. Bulk metallic glasses.
Mater Sci Eng-R-Rep,2004,44:45-89
|
CSCD被引
350
次
|
|
|
|
5.
Dai L H. Basic mechanical behaviors and mechanics of shear banding in BMGs.
Int J Impact Eng,2008,35:704-716
|
CSCD被引
29
次
|
|
|
|
6.
Greer A L. Shear bands in metallic glasses.
Mater Sci Eng-R-Rep,2013,74:71-132
|
CSCD被引
111
次
|
|
|
|
7.
Hufnagel T C. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments.
Acta Mater,2016,109:375-393
|
CSCD被引
33
次
|
|
|
|
8.
Hays C C. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions.
Phys Rev Lett,2000,84:2901-2904
|
CSCD被引
122
次
|
|
|
|
9.
Hofmann D C. Designing metallic glass matrix composites with high toughness and tensile ductility.
Nature,2008,451:1085-1089
|
CSCD被引
140
次
|
|
|
|
10.
Qiao J. Metallic glass matrix composites.
Mater Sci Eng-R-Rep,2016,100:1-69
|
CSCD被引
78
次
|
|
|
|
11.
Song W. Microstructural control via copious nucleation manipulated by in situ formed nucleants: Large-sized and ductile metallic glass composites.
Adv Mater,2016,28:8156-8161
|
CSCD被引
16
次
|
|
|
|
12.
Hufnagel T C. Structural aspects of elastic deformation of a metallic glass.
Phys Rev B,2006,73:064204
|
CSCD被引
2
次
|
|
|
|
13.
Huang Y. Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods.
Appl Phys Lett,2014,104:031912
|
CSCD被引
1
次
|
|
|
|
14.
Liu X F. Tuning plasticity of in-situ dendrite metallic glass composites via the dendrite-volume-fraction-dependent shear banding.
Mater Sci Eng-A,2017,680:121-129
|
CSCD被引
5
次
|
|
|
|
15.
Zhang L. Tuning the microstructure and metastability of β-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites.
Acta Mater,2019,168:24-36
|
CSCD被引
21
次
|
|
|
|
16.
Sun G Y. Comparison of microstructures and properties of Zr-based bulk metallic glass composites with dendritic and spherical bcc phase precipitates.
Intermetallics,2007,15:632-634
|
CSCD被引
9
次
|
|
|
|
17.
Zhang T. Dendrite size dependence of tensile plasticity of in situ Ti-based metallic glass matrix composites.
J Alloys Compd,2014,583:593-597
|
CSCD被引
6
次
|
|
|
|
18.
Wang J. Dendrite size dependence of mechanical properties of in-situ Ti-based bulk metallic glass matrix composites.
Mater Sci Eng-A,2017,704:77-81
|
CSCD被引
3
次
|
|
|
|
19.
张临财. 第二相对Zr基非晶复合材料力学性能的影响.
中国科学. G辑, 物理学,力学,天文学,2008,58:455-464
|
CSCD被引
1
次
|
|
|
|
20.
李继承. 块体金属玻璃力学行为有限元模拟研究进展.
固体力学学报,2010,31:76-84
|
CSCD被引
2
次
|
|
|
|
|