新型高温合金材料建模及涡轮盘成形工艺模拟
Modeling of newest superalloy and simulation of forming process for turbine disk
查看参考文献18篇
文摘
|
采用Gleeble-3800对一种新型变形高温合金材料GH4066进行热物理模拟测试,获得了该材料在温度为800, 900,1000,1100,1150℃,应变速率为0.0003,0.001,0.01,0.1,1,10 s~(-1)的不同变形工艺条件下高温流动应力特征。基于实验数据与唯象学模型,建立了该材料的本构关系模型;通过对不同温度、不同应变速率条件下的材料试样进行微观组织观察与晶粒尺寸测试,建立了材料的动态再结晶和晶粒长大模型;将材料本构关系、峰值应力应变、动态再结晶以及晶粒长大模型嵌入有限元软件中进行该材料涡轮盘锻造成形工艺的模拟计算,给出了该材料涡轮盘热锻造成形的合理参数范围。通过对材料模型的准确度验证,建立了一种综合实验与计算的材料模型构建及涡轮盘锻造工艺参数确定的方法。 |
其他语种文摘
|
The thermophysical simulation of a new wrought superalloy GH4066 was carried out by Gleeble-3800.The high temperature flow stress characteristics of this material under different deformation conditions such as the temperature of 800,900,1000,1100 ℃ and 1150 ℃,and the strain rate of 0.0003,0.001,0.01,0.1,1,10 s~(-1) were obtained.Based on the experimental data and the phenomenological model,the constitutive model of the material was established.The dynamic recrystallization and grain growth model of the material were also obtained.All the models are embedded into the finite element software to simulate the forging process of the turbine disc made by this material.As the numerical simulation results,the reasonable range of the thermoforming parameters for the turbine disk can be concluded.Finally,the material models are verified and an integrated method of experiment and calculation for the material models construction are established. That is a quite useful method for the parameters determination for the turbine disk forging process of this new material. |
来源
|
材料工程
,2020,48(7):127-132 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2019.001207
|
关键词
|
高温合金
;
材料本构
;
微观组织
;
动态再结晶
;
晶粒尺寸
;
数值模拟
|
地址
|
中国航发北京航空材料研究院, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国防科工局基础性军工科研院所稳定支持项目
|
文献收藏号
|
CSCD:6760248
|
参考文献 共
18
共1页
|
1.
Wang Z. Study on freckle of a high-alloyed GH4065nickel base wrought superalloy.
Acta Metallurgica Sinica,2018,55(3):417-426
|
CSCD被引
1
次
|
|
|
|
2.
杜金辉. 中国变形高温合金研制进展.
航空材料学报,2016,36(3):27-39
|
CSCD被引
38
次
|
|
|
|
3.
Etter T.
High temperature nickel-base superalloy for use in powder based manufacturing process:US20170021415,2017
|
CSCD被引
1
次
|
|
|
|
4.
Kari W.
ATI supplies GE aviation with its Rene65alloy,2012
|
CSCD被引
1
次
|
|
|
|
5.
Safari J. On the heat treatment of Rene-80nickel-base superalloy.
Journal of Materials Processing Technology,2006,176(1):240-250
|
CSCD被引
29
次
|
|
|
|
6.
Viswanathan G B. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy Rene88DT.
Materials Science and Engineering: A,2005,400/401(1):489-495
|
CSCD被引
21
次
|
|
|
|
7.
Devaux A. AD730TM a new nickel-based superalloy for high temperature engine rotative parts.
12th International Symposium on Superalloys,2012:911
|
CSCD被引
2
次
|
|
|
|
8.
Pang H T. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li.
Materials Science and Engineering:A,2007,448(1/2):67-79
|
CSCD被引
13
次
|
|
|
|
9.
Masoumi F. Coarsening and dissolution ofγ′precipitates during solution treatment of AD730TM Ni-based superalloy:mechanisms and kinetics models.
Journal of Alloys and Compounds,2016,658:981-995
|
CSCD被引
26
次
|
|
|
|
10.
Chen Z. Plastic deformation and residual stress in high speed turning of AD730TM nickelbased superalloy with PCBN and WC tools.
Procedia CIRP. 71,2018:440-445
|
CSCD被引
1
次
|
|
|
|
11.
谷月峰. 一种高性能航空涡轮盘用铸锻合金的研究进展.
金属学报,2015,51(10):1191-1206
|
CSCD被引
17
次
|
|
|
|
12.
王资兴. 高合金化GH4065镍基变形高温合金点状偏析研究.
金属学报,2019,55(3):417-426
|
CSCD被引
9
次
|
|
|
|
13.
Wang Y J. Constitutive model of wrought superalloy GH4066in hot deformation process.
Advanced in Materials Processing,2017,978/981:1217-1228
|
CSCD被引
1
次
|
|
|
|
14.
Castro M. Model for crystallization kinetics:deviations from Kolmogorov-Johnson-Mehl-Avrami kinetics.
Applied Physics Letters,1999,75(15):2205-2207
|
CSCD被引
2
次
|
|
|
|
15.
余永宁.
金属学原理,2013
|
CSCD被引
22
次
|
|
|
|
16.
赵立华. GH4169高温合金的静态再结晶动力学.
材料热处理学报,2015(5):217-222
|
CSCD被引
8
次
|
|
|
|
17.
Lin Y C. Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy.
Vacuum,2017,137:104-114
|
CSCD被引
21
次
|
|
|
|
18.
Ji H. Microstructure evolution and constitutive equations for the high-temperature deformation of 5Cr21Mn9Ni4Nheat-resistant steel.
Journal of Alloys and Compounds,2017,693:674-687
|
CSCD被引
5
次
|
|
|
|
|