基材冷却状态对激光沉积AlSil0Mg合金成形质量的影响
Influence of Substrate Cooling Condition on Properties of Laser Deposited AlSil0Mg Alloys
查看参考文献21篇
文摘
|
为研究基材冷却状态对激光沉积成形AlSil0Mg合金质量和性能的影响,在不同冷却条件下沉积成形AlSil0Mg合金试样。利用温度测量系统、金相显微镜、扫描电镜、万能材料试验机对成形过程中温度演变和成形后试样宏观形貌、组织状态、拉伸性能等进行分析。结果表明:合理的基体冷却温度会使沉积效率提升,缺陷率降低;改变冷却条件可以使沉积层组织发生显著变化,内部的枝晶间距明显减小。优化冷却条件后沉积试样的屈服强度和抗拉强度较无冷却条件下的分别提升了约4%和7%,其断裂方式均为韧性断裂。 |
其他语种文摘
|
In this study, the laser deposited AlSil0Mg alloys are formed under different cooling conditions to investigate the effect of the substrate cooling condition on the deposition qualities and properties.Further, we analyze the temperature variation during the forming process, morphologies, microstructures, and tensile properties of the formed specimens using the temperature testing systems, an optical microscope, a scanning electron microscope, and a universal material testing machine, respectively.The results denote that the deposition efficiency increases and the defect rate decreases when a reasonable substrate cooling temperature is considered.The deposition layer structure can be significantly altered when the cooling conditions are changed.In addition, the dendrite space of the deposition specimen is observed to decrease.The tensile strength and yield strength of the specimens fabricated under the cooling condition are improved by approximately 4% and 7%, respectively, when compared with those of the specimens fabricated without applying any cooling conditions.Furthermore, the fracture mode of the specimens is ductile fracture. |
来源
|
光学学报
,2020,40(11):1114002 【核心库】
|
DOI
|
10.3788/AOS202040.1114002
|
关键词
|
激光光学
;
AlSil0Mg合金
;
激光沉积
;
微观组织
;
强度
|
地址
|
1.
中国科学院沈阳自动化研究所, 辽宁, 沈阳, 110016
2.
中国科学院机器人与智能制造创新研究院, 辽宁, 沈阳, 110169
3.
中国科学院大学, 北京, 100049
4.
东北大学机械工程与自动化学院, 辽宁, 沈阳, 110004
5.
中国科学院金属研究所, 辽宁, 沈阳, 110016
6.
泰州鑫玛科技产业发展有限公司, 江苏, 泰州, 225327
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:6752481
|
参考文献 共
21
共2页
|
1.
杨守杰. 航空铝合金的发展回顾与展望.
材料导报,2005,19(2):76-80
|
CSCD被引
104
次
|
|
|
|
2.
Zhao L Z. Ultra-fine Al-Si hypereutectic alloy fabricated by direct metal deposition.
Materials & Design,2014,56:542-548
|
CSCD被引
9
次
|
|
|
|
3.
Gu J L. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys.
Journal of Materials Processing Technology,2016,230:26-34
|
CSCD被引
46
次
|
|
|
|
4.
Zhang Y. Ultrasonic-assisted laser metal deposition of the Al 4047alloy.
Metals,2019,9(10):1111
|
CSCD被引
2
次
|
|
|
|
5.
钦兰云. 激光沉积修复ZL114A铝合金的组织及力学性能.
稀有金属材料与工程,2017,46(6):1596-1601
|
CSCD被引
6
次
|
|
|
|
6.
钦兰云. 激光沉积修复ZL114A铝合金组织和力学性能分析.
中国激光,2016,43(12):1202009
|
CSCD被引
4
次
|
|
|
|
7.
丁莹. 激光立体成形AlSi10Mg合金的微观组织及力学性能.
中国表面工程,2018,31(4):46-54
|
CSCD被引
12
次
|
|
|
|
8.
陈永城. 激光熔化沉积4045铝合金显微组织及显微硬度.
中国激光,2015,42(3):0303008
|
CSCD被引
24
次
|
|
|
|
9.
Javidani M. Additive manufacturing of AlSi10Mg galloy using direct energy deposition: microstructure and hardness characterization.
Journal of Thermal Spray Technology,2017,26(4):587-597
|
CSCD被引
13
次
|
|
|
|
10.
李祚. 高沉积率激光熔覆沉积GH4169合金的微观组织与拉伸性能.
中国激光,2019,46(1):0102004
|
CSCD被引
10
次
|
|
|
|
11.
季霄. 激光熔化沉积Ti6Al4V/Inconel625梯度耐高温涂层组织演变行为研究.
中国激光,2019,46(11):1102008
|
CSCD被引
12
次
|
|
|
|
12.
Yadollahi A. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel.
Materials Science and Engineering: A,2015,644:171-183
|
CSCD被引
39
次
|
|
|
|
13.
Lewandowski J J. Metal additive manufacturing: a review of mechanical properties.
Annual Review of Materials Research,2016,46(1):151-186
|
CSCD被引
60
次
|
|
|
|
14.
Wang J T. The influence of temperature and surface conditions on surface absorptivity in laser surface treatment.
Journal of Applied Physics,2000,87(7):3245-3253
|
CSCD被引
4
次
|
|
|
|
15.
Li W. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism.
Materials Science and Engineering: A,2016,663:116-125
|
CSCD被引
65
次
|
|
|
|
16.
Li J. Microstructures and mechanical properties of laser additive manufactured Al-5Si-lCu-Mg alloy with different layer thicknesses.
Journal of Alloys and Compounds,2019,789:15-24
|
CSCD被引
4
次
|
|
|
|
17.
Dinda G P. Evolution of microstructure in laser deposited Al-11.28% Si alloy.
Surface & Coatings Technology,2012,206(8/9):2152-2160
|
CSCD被引
13
次
|
|
|
|
18.
Gao Y. Effect of processing parameters on solidification defects behavior of laser deposited AlSi10Mg alloy.
Vacuum,2019,167:471-478
|
CSCD被引
5
次
|
|
|
|
19.
李俐群. 激光熔化沉积AlSi10Mg及气孔对力学性能的影响.
中国表面工程,2019,32(3):109-114
|
CSCD被引
6
次
|
|
|
|
20.
Bian L. Mechanical properties and microstructural features of direct laser-deposited Ti-6Al-4V.
JOM,2015,67(3):629-638
|
CSCD被引
6
次
|
|
|
|
|