樱桃灰霉病菌LFD-RPA快速检测方法的建立
Development of LFD-RPA assay for rapid detection of Botrytis cinerea in cherry
查看参考文献31篇
文摘
|
灰霉病是樱桃的主要病害,由灰葡萄孢(Botrytis cinerea)侵染所致。该病菌可为害樱桃的花、叶、果实等多个部位,尤其在樱桃生长中后期及贮藏期发病率极高,危害严重。依据樱桃灰霉病菌内转录间隔区(ITS)序列设计引物,建立了樱桃灰霉病菌的重组酶聚合酶扩增结合侧流层析试纸条(LFD-RPA)检测方法。结果表明,该方法检测条件为37℃扩增30 min,能特异性地检测灰葡萄孢,灵敏度为100 fg·μL~(-1),略低于常规PCR(10 fg·μL~(-1))和荧光定量PCR(7.43 fg·μL~(-1));检测方法用时短,PRA扩增仅需30 min,LFD检测仅需10 min。本研究建立的快速检测方法可用于樱桃灰霉病菌的实时监测及病害的田间快速诊断。 |
其他语种文摘
|
Gray mold,caused by Botrytis cinerea,is one of the main diseases on cherry flowers,leaves,and fruits in the middle and late growth period and the storage period with high incidence rate.Based on the internal transcribed spacer(ITS)sequence,a pair of primers were designed and used to develop recombinase polymerase amplification combined with a lateral flow dipstick(LFD-RPA)assay.The results showed that the optimal reaction temperature and time were 37℃ for 30 min for specific detection of B.cinerea with the sensitivity at 100 fg ·μL~(-1),which was slightly lower than conventional PCR at 10 fg·μL~(-1)and real-time quantitative PCR at 7.43 fg ·μL~(-1).However,the detection process was relatively simple and rapid,just including RPA reaction in 30 min and LFD detection in 10 min.This method can be of great value for the surveillance of pathogen and early diagnosis of the disease. |
来源
|
植物病理学报
,2020,50(2):238-245 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000453
|
关键词
|
樱桃
;
灰葡萄孢
;
重组酶聚合酶扩增
;
侧流层析试纸条
;
ITS
;
快速检测
|
地址
|
1.
山西农业大学农学院, 太谷, 030801
2.
山西出入境检验检疫局检验检疫技术中心运城分中心, 运城, 044600
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
山西省应用基础研究项目
;
山西农业大学科技创新基金
|
文献收藏号
|
CSCD:6747211
|
参考文献 共
31
共2页
|
1.
Shao X. Occurrence and control of gray mold on Cerasus pseudocerasus (in Chinese).
中国果树,2010,4:75
|
CSCD被引
1
次
|
|
|
|
2.
Fan X.
Studies on molecular detection and identification of Botrytis species infecting major fruits and vegetables (in Chinese),2015
|
CSCD被引
2
次
|
|
|
|
3.
Shang Y.
Study on resistance of Botrytis cinerea from peach and cherry to seven fungicides (in Chinese ),2016
|
CSCD被引
1
次
|
|
|
|
4.
Carmen G. Assessment of real-time PCR as a method for determining the presence of Verticillium dahliae in different Solanaceae cultivars.
European Journal of Plant Pathology,2007,118(3):199-209
|
CSCD被引
8
次
|
|
|
|
5.
Ren H Y. Use of conventional and real-time quantitative PCR to detect Pestalotiopsis,the cause of bayberry twig blight (in Chinese).
植物病理学报,2016,46(1):1-10
|
CSCD被引
2
次
|
|
|
|
6.
Rigotti S. Two new primers highly specific for the detection of Botrytis cinerea Pers.: Fr.
Phytopathologia Mediterranea,2006,45(3):253-260
|
CSCD被引
2
次
|
|
|
|
7.
Ma Z W. Rapid molecular detection of Botrytis cinerea by PCR (in Chinese).
江西农业学报,2017,29(2):67-70
|
CSCD被引
1
次
|
|
|
|
8.
Saito S. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes.
Pest Management Science,2010,65(2):197-204
|
CSCD被引
1
次
|
|
|
|
9.
Tomlinson J A. Detection of Botrytis cinerea by loop-mediated isothermal amplification.
Letters in Applied Microbiology,2010,51(6):650-657
|
CSCD被引
2
次
|
|
|
|
10.
Duan Y B. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.
PLOS ONE,2014,9(10):e111094
|
CSCD被引
12
次
|
|
|
|
11.
Suarez M B. Development of real-time PCR (TaqMan) assays for the detection and quantification of Botrytis cinerea in planta.
Plant Physiology & Biochemistry,2005,43(9):890-899
|
CSCD被引
3
次
|
|
|
|
12.
Diguta C F. Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes.
FEMS Microbiology Letters,2010,313(1):81-87
|
CSCD被引
1
次
|
|
|
|
13.
Li B. Specific and sensitive detection of Phytophthora nicotianae by nested PCR and loop-mediated isothermal amplification assays.
Journal of Phytopathology,2015,163(3):185-193
|
CSCD被引
2
次
|
|
|
|
14.
Piepenburg O. DNA detection using recombination proteins.
PLOS Biology,2006,4(7):1115-1121
|
CSCD被引
166
次
|
|
|
|
15.
Jaroenram W. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome.
Journal of Virological Methods,2014,208:144-151
|
CSCD被引
16
次
|
|
|
|
16.
Milena E. Recombinase polymerase amplification assay for rapid detection of Rift Valley Fever Virus.
Journal of Clinical Virology,2012,54(4):308-312
|
CSCD被引
1
次
|
|
|
|
17.
Rohrman B A. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA.
Lab on A Chip,2012,12(17):3082-3088
|
CSCD被引
16
次
|
|
|
|
18.
Euler M. Recombinase polymerase amplification assay for rapid detection of Francisella tularensis.
Journal of Clinical Microbiology,2012,50(7):2234-2238
|
CSCD被引
19
次
|
|
|
|
19.
Abd A E W. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus.
PLOS ONE,2013,8(8):e71642
|
CSCD被引
27
次
|
|
|
|
20.
Liao X H. Detection for Aspergillus fumigatus by recombinase polymerase amplification assay (in Chinese).
临床检验杂志,2015,33(3):214-218
|
CSCD被引
1
次
|
|
|
|
|