香蕉枯萎病菌1号小种分泌蛋白与效应子的预测与分析
Genome-scale prediction and analysis of secreted proteins and effectors in Fusarium oxysporum f.sp.cubense race 1
查看参考文献52篇
文摘
|
由尖孢镰刀菌古巴专化型1号小种(Fusarium oxysporum f.sp.cubense race 1,Foc1)引起的香蕉枯萎病是香蕉生产上的毁灭性病害之一。分泌蛋白作为一类重要致病因子,在Foc1与香蕉互作过程中起着重要作用。本文利用SignalP、WoLF PSORT、TargetP、TMHMM和big-PI Predictor等生物信息学软件,对Foc1全基因组编码的15 438条蛋白质氨基酸序列进行了分泌蛋白及效应子的预测分析。结果表明,Foc1全基因组编码蛋白中有988个经典分泌蛋白,占编码蛋白总数的6.40%。蛋白特征分析表明,其氨基酸长度主要集中在101~ 500个氨基酸(占总数的71.26%),信号肽长度集中在17 ~ 20个氨基酸(占61.94%),信号肽切割位点以SPaseⅠ型为主(占92.91%)。碳水化合物酶类(CAZymes)分析表明,有281个分泌蛋白属于CAZymes,其中以糖苷水解酶家族最多。对细胞壁降解酶类分析表明,有27个分泌蛋白属于纤维素降解酶类,73个属于果胶降解酶类,42个属于木聚糖降解酶类。以氨基酸长度≤400和半胱氨酸残基数≥4为筛选条件,发现Foc1经典分泌蛋白中有378个候选效应子。qRT-PCR分析表明,7个候选效应子均在香蕉组织提取物诱导后获得上调表达,从实验角度证实了其为真正的效应子。 |
其他语种文摘
|
Fusarium wilt,caused by Fusarium oxysporum f.sp.cubense race 1(Foc1),is one of the most important diseases that causes the greatest reductions in banana yield worldwide.Secreted proteins can act as pathogenicity factors and play important roles in the Foc-banana interactions.In this study,a refined Foc1 secretome was predicted by combining several bioinformatic approaches,including SignalP,WoLF PSORT,TargetP,TMHMM and big-PI Predictor.Among the 15438 protein sequences of Foc1,a total of 988 classically secreted proteins are predicted,representing 6.40% of the total proteins.The characteristics of these proteins showed that the length of amino acids was concentrated between 101 to 500(71.26%),the length of the signal peptides was concentrated between 17 to 20 amino acids(61.94%),signal peptide cleavage sites mainly belongs to SPase I-cleaved signal peptides(92.91%).Among the 988 classically secreted proteins,281 carbohydrate-active enzymes were also predicted,in which glycoside hydrolases superfamily was the most numerous.In addition,378 effector candidates were predicated with amino acid length ≤ 400 and cysteine residues ≥ 4.Quantitative PCR analysis showed that the expression of seven genes encoding the effector candidates increased significantly at transcriptional level induced by banana root extract,which further showing that these effector candidates predicted from secretomes are true effectors by experimental validation.To our best knowledge,it is the first attempt to predict Foc1 secretome and effectors on genome-wide scale,which will help to understand the mechanism of the Foc-banana interactions. |
来源
|
植物病理学报
,2020,50(2):129-140 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000458
|
关键词
|
香蕉枯萎病菌1号小种
;
生物信息学
;
分泌蛋白
;
效应子
;
碳水化合物酶类
|
地址
|
1.
华南农业大学, 广东省微生物信号与作物病害重点实验室, 广州, 510642
2.
华南农业大学农学院, 广州, 510642
3.
华南农业大学材料与能源学院, 广州, 510642
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家自然科学基金
;
广东省科技计划项目
;
广东省广州市科技计划项目
|
文献收藏号
|
CSCD:6747199
|
参考文献 共
52
共3页
|
1.
Liu J H. Research progress on banana functional genomics involved in fruit quality.
Hereditas,2012,34(4):412-419
|
CSCD被引
1
次
|
|
|
|
2.
Sun Y. Research advances on molecular pathogenic mechanism and control of Fusarium oxysporum f. sp. cubense (in Chinese).
热带作物学报,2012,33(4):759-766
|
CSCD被引
2
次
|
|
|
|
3.
Czislowski E. Investigation of the diversity of effector genes in the banana pathogen, Fusarium oxysporum f. sp. cubense, reveals evidence of horizontal gene transfer.
Molecular Plant Pathology,2018,19(5):1155-1171
|
CSCD被引
5
次
|
|
|
|
4.
De Sain M. The role of pathogen-secreted proteins in fungal vascular wilt diseases.
International Journal of Molecular Sciences,2015,16(10):2397023993
|
CSCD被引
7
次
|
|
|
|
5.
Sperschneider J. Advances and challenges in computational prediction of effectors from plant pathogenic fungi.
PLoS Pathogens,2015,11(5):e1004806
|
CSCD被引
8
次
|
|
|
|
6.
Federici L. Polygalacturonase inhibiting proteins: players in plant innate immunity?.
Trends in Plant Science,2006,11(2):65-70
|
CSCD被引
16
次
|
|
|
|
7.
Lorrain C. Effector-mining in the poplar rust fungus Melampsora larici-populina secretome.
Frontiers in Plant Science,2015,6:1051
|
CSCD被引
2
次
|
|
|
|
8.
Yu Q L. Primary analysis of hosttargeting-motif harbored secreted proteins in genome of Fusarium graminearum (in Chinese).
生物技术通报,2008,1:160-165
|
CSCD被引
4
次
|
|
|
|
9.
Nie Y F. Genome-scale prediction and analysis of secreted proteins of Fusarium oxysporum f. sp. melonis (in Chinese).
华中农业大学学报,2016,35(3):24-29
|
CSCD被引
2
次
|
|
|
|
10.
Zhang Y. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics.
Nature Communications,2014,5:3849
|
CSCD被引
33
次
|
|
|
|
11.
Guo L. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease.
PLoS One,2014,9(4):e95543
|
CSCD被引
7
次
|
|
|
|
12.
Han C Z. Advance in functional research of secreted protein and CAZymes in plant pathogenic filamentous fungus (in Chinese).
南京林业大学学报,2017,41(5):152-160
|
CSCD被引
1
次
|
|
|
|
13.
Petersen T N. SignalP 4.0: discriminating signal peptides from transmembrane regions.
Nature Methods,2011,8(10):785-786
|
CSCD被引
337
次
|
|
|
|
14.
Horton P. WoLF PSORT: protein localization predictor.
Nucleic Acids Research,2007,35(Web Server issue):W585-W587
|
CSCD被引
165
次
|
|
|
|
15.
Emanuelsson O. Locating proteins in the cell using TargetP, SignalP and related tools.
Nature Protocols,2007,2(4):953971
|
CSCD被引
110
次
|
|
|
|
16.
Schuster M. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes.
Fungal Genetics and Biology,2018,112:21-30
|
CSCD被引
6
次
|
|
|
|
17.
Eisenhaber B. Post-translational GPI lipid anchor modification of proteins in kingdoms of life: Analysis of protein sequence data from complete genomes.
Protein Engineering,2001,14(1):17-25
|
CSCD被引
13
次
|
|
|
|
18.
Juncker A S. Prediction of lipoprotein signal peptides in Gram-negative bacteria.
Protein Science,2003,12(8):16521662
|
CSCD被引
30
次
|
|
|
|
19.
Cantarel B L. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics.
Nucleic Acids Research,2009,37(Database issue):D233-D238
|
CSCD被引
152
次
|
|
|
|
20.
Jones D A. Bioinformatic prediction of plant-pathogenicity effector proteins of fungi.
Current Opinion in Microbiology,2018,46:43-49
|
CSCD被引
4
次
|
|
|
|
|