高强β钛合金的研究现状与发展趋势
Research status and development trend of high-strength β titanium alloys
查看参考文献74篇
文摘
|
β钛合金具有高比强度、良好的成形性与耐腐蚀性、较宽的性能调节范围等优点,自20世纪50年代以来在多种军用/民用飞机的特定结构上取得了理想的应用效果。随着研究的不断深入,β钛合金成分-工艺-组织的关系更加清晰,性能数据库也不断完善,然而其应用领域在最近20年未获得进一步拓展。本文回顾β钛合金的发展历程及其应用,总结β钛合金的显微组织调控方法、重要工艺参数及其影响,并以目前用量最大的5种高强β钛合金(Ti-10-2-3、Ti-5553、β-21S、β-C、Ti-15-3)为例讨论工艺-组织-性能的关系。最后,从成本与性能两个方面分析β钛合金面临的挑战与机遇。具有更强工艺适应性以及更优力学性能匹配的新合金是未来成分设计的方向,材料集成计算技术将是新型高强β钛合金成分-工艺-组织-性能全流程开发的加速器。 |
其他语种文摘
|
β-Ti alloys have been used in many military/commercial aircraft since 1950s.Their high specific strength, good corrosion resistance, and high formability meet the special requirement of certain structures.Despite a further understanding of the relationship among chemistry, processing, and microstructure, as well as the expanding of performance data base, there is some stagnation in commercialization of new alloys over the past 20 years.This paper reviews the development and applications of β-Ti alloys, and summarizes the important processing parameters for microstructure control.The widely used 5 kinds of high-strength β- Ti alloys are discussed based on their processing-microstructure-property relationship.From the cost and performance perspectives,the challenges and opportunities of β-Ti alloys are identified.Future research will be focused on alloy compositions with more robust processing widows and better performance matching.The integrated computational materials design technology will be a prospect to accelerate the workflow development of chemistry-processing- microstructure-performance for high strength β-Ti alloys. |
来源
|
航空材料学报
,2020,40(3):63-76 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000071
|
关键词
|
β钛合金
;
时效强化
;
显微组织
;
断裂韧度
;
损伤容限
|
地址
|
1.
中国航空制造技术研究院科学技术委员会, 北京, 100024
2.
中国航空制造技术研究院材料应用研究部, 北京, 100024
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:6741253
|
参考文献 共
74
共4页
|
1.
王向明.
飞机钛合金结构设计与应用,2010
|
CSCD被引
7
次
|
|
|
|
2.
黄旭.
先进航空钛合金材料与应用,2012
|
CSCD被引
33
次
|
|
|
|
3.
朱知寿.
新型航空高性能钛合金材料技术研究与发展,2013
|
CSCD被引
24
次
|
|
|
|
4.
赵永庆.
钛合金相变及热处理,2012
|
CSCD被引
62
次
|
|
|
|
5.
Williams J C. Progress in structural materials for aerospace system.
Acta Mater,2003,51:5775-5799
|
CSCD被引
425
次
|
|
|
|
6.
Boyer R R. Materials consideration for aerospace application.
MRS Bulletin,2015,40(12):1055-1066
|
CSCD被引
6
次
|
|
|
|
7.
Lutjering G.
Titanium. 2nd edition,2007
|
CSCD被引
5
次
|
|
|
|
8.
Banerjee D. Perspective on titanium science and technology.
Acta Materialia,2013,61(3):844-879
|
CSCD被引
291
次
|
|
|
|
9.
Bania P J. Beta titanium alloys and their role in the titanium industry.
JOM,1994,46(7):16-19
|
CSCD被引
32
次
|
|
|
|
10.
Eylon D. Issues in the development of beta titanium alloys.
JOM,1994,46(7):14-15
|
CSCD被引
11
次
|
|
|
|
11.
Bania P J. Beta 21S:A high temperature metastable-beta titanium alloy.
Titanium Prod Appl, Proc Tech Program Int Conf, vol 2,1990:784-793
|
CSCD被引
1
次
|
|
|
|
12.
Chen C C. Practical considerations for manufacturing high-strength Ti-10V-2Fe-3A1 Alloy Forgings.
JOM,1979,31(7):33-39
|
CSCD被引
1
次
|
|
|
|
13.
Boyer R R. Processing properties relationships of Ti-10V-2Fe-3Al.
Metallurgical & Materials Transactions A,1987,18(12):2095-2103
|
CSCD被引
3
次
|
|
|
|
14.
Cotton J D. Titanium investment casting defects: a metallographic overview.
JOM,2006,58(6):13-16
|
CSCD被引
5
次
|
|
|
|
15.
Mitchell A. Melting,casting,and forging problems in titanium alloys.
Materials Science & Engineering: A,1997,49(6):40-42
|
CSCD被引
1
次
|
|
|
|
16.
Weiss I. Thermomechanical processing of beta titanium alloys-an overview.
Materials Science & Engineering:A,1998,243:46-65
|
CSCD被引
120
次
|
|
|
|
17.
Froes F H. The beta titanium alloys.
JOM,1985,37(7):28-37
|
CSCD被引
13
次
|
|
|
|
18.
Duerig T W. Overview: microstructure and properties of beta titanium alloys.
Beta titanium alloys of the 1980’s,1984:19-28
|
CSCD被引
1
次
|
|
|
|
19.
Vassel A. Microstructural instabilities in beta titanium alloys.
Beta titanium alloys of the 1980’s,1984:173-180
|
CSCD被引
1
次
|
|
|
|
20.
Raghunathan S L. The evolution of microtexture and macrotexture during subtransus forging of Ti-10V-2Fe-3Al.
Material Science Engineering: A,2008,488(4):8-15
|
CSCD被引
12
次
|
|
|
|
|