热力耦合作用下钛合金动态相变行为研究进展
Research progress of dynamic phase transformation behavior of titanium alloy under thermo-mechanical coupling process
查看参考文献91篇
文摘
|
变形和相变是钛合金材料研究的两大主题。钛合金通常需要进行一系列复杂的热机械处理,以获得与服役性能相对应的微观组织,其热变形行为是典型的热力耦合作用过程,变形和相变可能同时发生,并相互影响,是目前的研究热点之一。然而,由于热变形过程中不可避免地存在动态回复/再结晶、组织破碎/球化、大量变形缺陷、变形织构以及应力诱发相变等演化行为,加上热力耦合作用下相变动力学特征和变体选择晶体学机制的改变,直接导致钛合金热变形过程中的动态相变行为变得极为复杂,深入揭示其演变规律也变得相当困难。本文针对钛合金热变形过程中的动态相变行为,总结了钛合金变形及相变的主要特征和规律,重点从析出相形貌特征、变体选择机制和相变动力学特征三个方面介绍了钛合金热力耦合作用下动态相变规律的研究进展,并对其研究发展趋势进行了总结和展望。 |
其他语种文摘
|
Deformation and phase transformation are two major topics in the study of titanium alloy materials.Titanium alloys usually require a series of complex thermo-mechanical treatments to obtain a microstructure corresponding to service performance.Its hot deformation behavior is a typical thermo-mechanical coupling process.Deformation and phase transformation may occur simultaneously and affect each other.It is one of the current research hotspots.However, due to the inevitable existence of dynamic recovery/ recrystallization, microstructure fragmentation/ spheroidization, a large number of deformation defects, deformation texture, and stress-induced phase transformation during hot deformation, coupled with the changes of the phase transformation kinetics characteristics and the crystallographic mechanism of the variant selection under thermo-mechanical coupling, directly leads to the extremely complicated dynamic phase transformation behavior of the titanium alloy during the hot deformation process, and it becomes quite difficult to reveal its evolution law in depth.This paper summarizes the main characteristics and laws of titanium alloy deformation and phase transformation in view of the dynamic phase transformation behavior of titanium alloy during hot deformation,mainly introduces the research progress of the dynamic phase transformation of the titanium alloy under the thermomechanical coupling from the three aspects of precipitation phase morphology characteristics, variant selection mechanism and phase transformation kinetics characteristics, and summarizes and prospects its research and development trend. |
来源
|
航空材料学报
,2020,40(3):25-44 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000065
|
关键词
|
钛合金
;
热力耦合
;
变形
;
相变
;
变体选择
|
地址
|
1.
西北工业大学, 凝固技术国家重点实验室, 西安, 710072
2.
先进金属材料精确热成型技术国家地方联合工程研究中心, 先进金属材料精确热成型技术国家地方联合工程研究中心, 西安, 710072
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
;
陕西省自然科学基础研究计划
|
文献收藏号
|
CSCD:6741251
|
参考文献 共
91
共5页
|
1.
Lutjering G.
Titanium(engineering materials and processes),2007
|
CSCD被引
1
次
|
|
|
|
2.
Dipankar B. Perspectives on titanium science and technology.
Acta Materialia,2013,61(3):844-879
|
CSCD被引
291
次
|
|
|
|
3.
Boyer R R. The use of β titanium alloys in the aerospace industry.
Journal of Materials Engineering and Performance,2005,14(6):681-685
|
CSCD被引
89
次
|
|
|
|
4.
Zhang L C. A review on biomedical titanium alloys: recent progress and prospect.
Advanced Engineering Materials,2019,21(4):1801215
|
CSCD被引
32
次
|
|
|
|
5.
Kolli R. A review of metastable beta titanium alloys.
Metals,2018,8(7):506
|
CSCD被引
23
次
|
|
|
|
6.
Bhattacharjee A. Titanium alloys:part 2-alloy development,properties and applications.
aerospace materials and material technologies,2017
|
CSCD被引
1
次
|
|
|
|
7.
Yadav P. Effect of heat-treatment on microstructure and mechanical properties of Ti alloys.
Materials Today: Proceedings,2020
|
CSCD被引
1
次
|
|
|
|
8.
Jackson M. A review of advances in processing and metallurgy of titanium alloys.
Materials Science and Technology,2006,22(8):881-887
|
CSCD被引
10
次
|
|
|
|
9.
Kou H C. An experimental study on the mechanism of texture evolution during hotrolling process in a βtitanium alloy.
Journal of Alloys & Compounds,2014,603:23-27
|
CSCD被引
4
次
|
|
|
|
10.
Li J S. Texture evolution and the recrystallization behavior in a near β titanium alloy Ti-733.
Materials Characterization,2020,159:109999
|
CSCD被引
4
次
|
|
|
|
11.
Zhang Z X. Microstructure/texture evolution maps to optimize hot deformation process of near-α titanium alloy.
Progress in Natural Science: Materials International,2020,30(1):86-93
|
CSCD被引
4
次
|
|
|
|
12.
Fan J K. High temperature discontinuous yielding in a new near β titanium alloy Ti-7333.
Rare Metal Material and Engineering,2014,43(4):808-812
|
CSCD被引
8
次
|
|
|
|
13.
Cram D G. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation.
Acta Materialia,2009,57(17):5218-5228
|
CSCD被引
16
次
|
|
|
|
14.
Gourdet S. An experimental study of the recrystallization mechanism during hot deformation of aluminium.
Materials Science and Engineering:A,2000,283(1/2):274-288
|
CSCD被引
60
次
|
|
|
|
15.
Fan J K. Hot deformation mechanism and microstructure evolution of a new near β titanium alloy.
Materials Science and Engineering:A,2013,584:121-132
|
CSCD被引
18
次
|
|
|
|
16.
Jackson M. The microstructural evolution of near beta alloy Ti-10V-2Fe-3Al during subtransus forging.
Metallurgical and Materials Transactions A,2005,36:1317-1327
|
CSCD被引
12
次
|
|
|
|
17.
Warchomicka F. Study of the hot deformation behavior in Ti-5Al-5Mo-5V-3Cr-1Zr.
Materials Science and Engineering: A,2011,528(28):8277-8285
|
CSCD被引
41
次
|
|
|
|
18.
Ahmed M. The evolution of microstructure and mechanical properties of Ti-5Al-5Mo-5V-2Cr-1Fe during ageing.
Journal of Alloys and Compounds,2015,629:260-273
|
CSCD被引
7
次
|
|
|
|
19.
Stefansson N. Mechanisms of globularization of Ti-6Al-4V during static heat treatment.
Metallurgical and Materials Transactions A,2003,34(3):691-698
|
CSCD被引
63
次
|
|
|
|
20.
Zherebtsov S. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing.
Acta Materialia,2011,59(10):4138-4150
|
CSCD被引
62
次
|
|
|
|
|