高强度高弹性钛合金的研究进展
Recent development in Titanium alloys with high strength and high elasticity
查看参考文献89篇
文摘
|
钛及钛合金是航空、航天和国防武器装备等领域重要的轻质结构材料。钛合金较低的弹性模量赋予其优良的弹性功能特性,被应用于航空航天等领域的紧固件和弹簧等元器件。目前常用的高强钛合金弹性模量较高,不能完全满足应用需求,强度和弹性性能匹配有待进一步提高。本文综述了高强度高弹性钛合金的发展现状以及新型合金的研发进展,从高强度高弹性钛合金的特点及存在的问题出发,提出基于电子理论的成分设计和β基体结构稳定性的组织调控方法,并简要介绍本课题组基于该方法进行的高强度高弹性钛合金的研究进展,最后展望了高强度高弹性钛合金的发展方向。 |
其他语种文摘
|
Titanium and titanium alloys are important lightweight structural materials in the fields of aviation, aerospace and defense weapons.The low elastic modulus of Ti alloy gives it excellent elastic function, and it is applied to fasteners, springs and other elastic components in aviation, aerospace and other industries.The currently used high-strength Ti alloys exhibit high Young 's modulus that can not fully meet the application requirements.The balance between high strength and high elastic property of conventional Ti alloys needs to be further improved.This paper reviews the current research and development of high strength and high elasticity Ti alloys.Based on the comprehensive understanding of high strength and high elasticity Ti alloys and the existing problems, the composition design method based on electronic theories and the structure design strategy based on phase stability of β-matrix of Ti alloys with high strength and high elasticity is proposed in this paper.The research progress of novel Ti alloys with high strength and high elasticity based on the proposed alloy design strategy is also briefly presented.Finally,the future research direction of Ti alloys with high strength and high elasticity is prospected. |
来源
|
航空材料学报
,2020,40(3):11-24 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000085
|
关键词
|
钛合金
;
强度
;
弹性
;
成分设计
;
组织调控
|
地址
|
北京航空航天大学材料科学与工程学院, 北京, 100191
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6741250
|
参考文献 共
89
共5页
|
1.
Banerjee D. Perspectives on titanium science and technology.
Acta Materialia,2013,61(3):844-879
|
CSCD被引
291
次
|
|
|
|
2.
Geetha M. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review.
Progress in Materials Science,2009,54(3):397-425
|
CSCD被引
305
次
|
|
|
|
3.
于振涛. 新型医用钛合金材料的研发和应用现状.
金属学报,2017,53(10):1238-1264
|
CSCD被引
49
次
|
|
|
|
4.
王清江. 高温钛合金的现状与前景.
航空材料学报,2014,34(4):1-26
|
CSCD被引
94
次
|
|
|
|
5.
朱知寿. 新型高性能钛合金研究与应用.
航空材料学报,2016,36(3):7-12
|
CSCD被引
19
次
|
|
|
|
6.
Niinomi M. Biomedical titanium alloys with Young’s moduli close to that of cortical bone.
Regenerative Biomaterials,2016,3(3):173-185
|
CSCD被引
20
次
|
|
|
|
7.
李蒙. 航空航天紧固件用钛合金材料综述.
有色金属材料与工程,2018,39(4):49-53
|
CSCD被引
19
次
|
|
|
|
8.
朱知寿. 我国航空用钛合金技术研究现状及发展.
航空材料学报,2014,34(4):49-53
|
CSCD被引
1
次
|
|
|
|
9.
Ramezannejad A. New insights into nickel-free superelastic titanium alloys for biomedical applications.
Current Opinion in Solid State and Materials Science,2019,23(6):100783-1-100783-25
|
CSCD被引
4
次
|
|
|
|
10.
Chen H Y. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals.
Nature Materials,2020
|
CSCD被引
1
次
|
|
|
|
11.
Abdel-Hady Gepreel M. Biocompatibility of Ti-alloys for long-term implantation.
Journal of the Mechanical Behavior Biomedical Materials,2013,20:407-415
|
CSCD被引
45
次
|
|
|
|
12.
董瑞峰. 航空紧固件用钛合金材料发展现状.
航空制造技术,2018,61(4):86-91
|
CSCD被引
8
次
|
|
|
|
13.
郑勇. 钛合金弹簧发展动态研究.
飞机设计,2012,32(3):46-49
|
CSCD被引
1
次
|
|
|
|
14.
Cotton J D. State of the art in beta titanium alloys for airframe applications.
The Minerals, Metals & Materials Society,2015,67(6):1281-1303
|
CSCD被引
28
次
|
|
|
|
15.
Ozaltin K. Enhancement of mechanical properties of biocompatible Ti-45Nb alloy by hydrostatic extrusion.
Journal of Materials Science,2014,49(20):6930-6936
|
CSCD被引
1
次
|
|
|
|
16.
Saito T. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism.
Science,2003,300(5618):464-467
|
CSCD被引
85
次
|
|
|
|
17.
Hao Y L. Superelastic titanium alloy with unstable plastic deformation.
Applied Physics Letters,2005,87(9):091906-1-091906-3
|
CSCD被引
32
次
|
|
|
|
18.
Hao Y L. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.
Acta Biomaterialia,2007,3(2):277-286
|
CSCD被引
85
次
|
|
|
|
19.
Fu Y. Microstructure evolution and mechanical properties of Ti-8Nb-2Fe-0.2O alloy with high elastic admissible strain for orthopedic implant applications.
Progress in Natural Science: Materials International,2020,30(1):100-105
|
CSCD被引
2
次
|
|
|
|
20.
Zhu W G. Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with bi-modal structure.
Materials Science and Engineering: A,2019,762:1380861-1-1380861-9
|
CSCD被引
1
次
|
|
|
|
|