Ultra-stable metal nano-catalyst synthesis strategy: a perspective
查看参考文献79篇
文摘
|
Supported metal nanoparticles (NPs) as an important heterogeneous catalyst have been widely applied in various industrial processes. During the catalytic reaction,size of the particles plays an important role in determining their catalytic performance. Generally, the small particles exhibit superior catalytic activity in comparison with the larger particles because of an increase in lowcoordinated metal atoms on the particle surface that work as active sites, such as edges and corner atoms. However,these small NPs are typically unstable and tend to migrate and coalescence to reduce their surface free energy during the real catalytic processes, particularly in high-temperature reactions. Therefore, a means to fabricate stable small metal NP catalysts with excellent sinter-resistant performance is necessary for maintaining their high catalytic activity. In this study, we have summarized recent advances in stabilizing metal NPs from two aspects including thermodynamic and kinetic strategies. The former mainly involve preparing uniform NPs (with an identical size and homogeneous distribution) in order to restrain Ostwald ripening to achieve stability, while the latter primarily involves fixing metal NPs in some special confinement materials (e.g., zeolites, mesoporous silica and mesoporous carbons), encapsulating NPs using an oxide-coating film (e.g., forming core-shell structures), or constructing strong metal-support interactions to improve stability. At the end of this review, we highlight our recent work on the preparation of high-stability metal catalysts via a unique interfacial plasma electrolytic oxidation technology, that is,metal NPs are well embedded in a porous MgO layer that has both high thermal stability and excellent catalytic activity. |
来源
|
Rare Metals
,2020,39(2):113-130 【核心库】
|
DOI
|
10.1007/s12598-019-01350-y
|
关键词
|
Nano-catalysts
;
Thermal stability
;
Sinterresistant
;
Synthesis strategy
|
地址
|
School of Materials Science and Engineering, Northeastern University, Key Laboratory for Anisotropy and Texture of Materials, MOE, Shenyang, 110819
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1001-0521 |
学科
|
化学;一般工业技术 |
基金
|
国家自然科学基金
;
the Fundamental Research Funds for the Central Universities
;
the Provincial Science and Technology Project/Doctor Start Fund
|
文献收藏号
|
CSCD:6735541
|
参考文献 共
79
共4页
|
1.
He Q. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation.
Nat Commun,2016,7:12905
|
CSCD被引
5
次
|
|
|
|
2.
Yang X F. Single-atom catalysts: a new frontier in heterogeneous catalysis.
Acc Chem Res,2013,46(8):1740
|
CSCD被引
376
次
|
|
|
|
3.
Huda M. Aerobic toluene oxidation catalyzed by subnano metal particles.
Angew Chem Int Edit,2019,58(4):1002
|
CSCD被引
3
次
|
|
|
|
4.
Imaoka T. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.
Nat Commun,2017,8:688
|
CSCD被引
5
次
|
|
|
|
5.
Ouyang R H. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions.
J Am Chem Soc,2013,135(5):1760
|
CSCD被引
36
次
|
|
|
|
6.
Hansen T W. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?.
Acc Chem Res,2013,46(8):1720
|
CSCD被引
76
次
|
|
|
|
7.
Cargnello M. Exceptional activity for methane combustion over modular Pd@CeO_2 subunits on functionalized Al_2O_3.
Science,2012,337(6095):713
|
CSCD被引
76
次
|
|
|
|
8.
Polo-Garzon F. Elucidation of the reaction mechanism for high-temperature water gas shift over an industrial-type copper-chromium-iron oxide catalyst.
J Am Chem Soc,2019,141(19):7990
|
CSCD被引
6
次
|
|
|
|
9.
Morgan K. Metal redispersion strategies for recycling of supported metal catalysts: a perspective.
ACS Catal,2015,5(6):3430
|
CSCD被引
13
次
|
|
|
|
10.
Arnal P M. High-temperature-stable catalysts by hollow sphere encapsulation.
Angew Chem Int Edit,2006,45(48):8224
|
CSCD被引
30
次
|
|
|
|
11.
Prieto G. Towards stable catalysts by controlling collective properties of supported metal nanoparticles.
Nat Mater,2013,12(1):34
|
CSCD被引
20
次
|
|
|
|
12.
Li W Z. Stable platinum nanoparticles on specific MgAl_2O_4 spinel facets at high temperatures in oxidizing atmospheres.
Nat Commun,2013,4:2481
|
CSCD被引
18
次
|
|
|
|
13.
Dong J H. Carbide-supported Au catalysts for water-gas shift reactions: a new territory for the strong metal-support interaction effect.
J Am Chem Soc,2018,140(42):13808
|
CSCD被引
21
次
|
|
|
|
14.
Goel S. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites.
J Am Chem Soc,2012,134(42):17688
|
CSCD被引
21
次
|
|
|
|
15.
Chen Y S. Controlled pore size of Pt/KIT-6 used for propane total oxidation.
Rare Met,2018,37(2):123
|
CSCD被引
5
次
|
|
|
|
16.
Liu R H. High thermal stable gold catalyst supported on La_2O_3 doped Fe_2O_3 for low-temperature CO oxidation.
J Rare Earth,2010,28(3):376
|
CSCD被引
2
次
|
|
|
|
17.
Zhang T T. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis.
ACS Nano,2014,8(7):7297
|
CSCD被引
9
次
|
|
|
|
18.
Zhao H Y. Ultra-small platinum nanoparticles encapsulated in sub-50 nm hollow titania nanospheres for low-temperature water-gas shift reaction.
ACS Appl Mater Interface,2018,10(43):36954
|
CSCD被引
1
次
|
|
|
|
19.
Luo H. A novel insight into enhanced propane combustion performance on PtUSY catalyst.
Rare Met,2017,36(1):1
|
CSCD被引
9
次
|
|
|
|
20.
Liu Y L. Control of catalytic activity of nano-Au through tailoring the Fermi level of support.
Small,2019,15(34):1901789
|
CSCD被引
2
次
|
|
|
|
|