帮助 关于我们

返回检索结果

悬浮态上皮细胞粘附的力学–化学耦合模型及数值模拟
MECHANOCHEMICAL COUPLING MODEL AND NUMERICAL SIMULATION FOR CELL-CELL ADHESION IN SUSPENDED EPITHELIAL CELLS

查看参考文献37篇

冯世亮 1   周吕文 1   吕守芹 2,3   龙勉 2,3  
文摘 上皮细胞通过局部募集上皮性钙粘附蛋白(E-cadherin)建立胞间粘着连接,实验证实该过程受到肌球蛋白皮层张力的调控.为了从系统层面阐明粘着连接形成动力学过程,本文考察皮层张力调控肌动蛋白(F-actin)解聚从而参与E-cadherin级联转导,同时以马达–离合器机制模拟两细胞相互作用,据此构建可反映悬浮态细胞粘附的力学–化学耦合数学模型;对整体包含随机点源的非线性反应–扩散方程组与平衡微分方程耦合系统采取了自行发展的格子Boltzmann–粒子法与蒙特–卡洛法数值求解.数值模拟表明,由收缩性肌球蛋白(myosin-II)拉动胞间E-cadherin成键可提升皮层张力,进而降低F-actin解聚速率﹑锚定更多的E-cadherin;所构成的力学反馈回路展现出时空效应,可帮助E-cadherin在接触区建立初始极性; E-cadherin形成顺式二聚体则将初始极性放大,导致接触区E-cadherin展现起始、快速增长及慢速增长的积聚动力学特征.皮层呈松散结构时刚度较小,可通过延长胞间E-cadherin成键寿命提升张力,而接触区弧度适中时(≈ 1.2 rad) E-cadherin峰值最高;两者可分别作为启动力学反馈回路及调控粘着连接成熟度的有效手段.
其他语种文摘 Epithelial cells develop adherens junctions via local recruitment of a transmembrane receptor, named Ecadherin, whose activity is dependent on Ca 2+ signal. Growing evidences indicate the importance of tensile forces within actomyosin cortex, yet a system-level understanding for the mechanosensitive responses of cell-cell contacts remains unclear. Here, we constructed a mechanochemical coupling model, in which the tensile forces presented at adherens junctions participated in the interactions between myosin contractility, actin dynamics and local E-cadherin recruitment, which together, formed a mechanical feedback loop (MFL). The mechanical interactions between a pair of epithelial cells were treated by a motor-clutch mechanism. The in-house developed lattice-Boltzmann particle (LBP)-D1Q3 method, which had been embedded with a simple Monte-Carlo method, was adopted to solve the coupled nonlinear reactiondiffusion equations, which had stochastic reaction terms, and were coupled with the equilibrium differential equation. The numerical simulation results indicate that the spatiotemporal effects of MFL may arise an initial anisotropy in the distribution pattern of E-cadherin, which could be further amplified by “cis” interactions between E-cadherins from the same cell surface. The model thus confirms three distinct phases in the profile of E-cadherin accumulation at the center of contact zone, which are initial, rapid increase, and slowly increase, as observed experimentally. Furthermore, local recruitment of E-cadherin can be mechanically regulated by either the elastic modulus of actomyosin cortex or the extent of cell-cell contact, whereupon the highest E-cadherin density takes place at 1.2 rad. Accordingly, decreasing the elastic modulus of actomyosin cortex may thus act as a triggering mechanism for MFL while the length of cell-cell contact is denoted as a controller of the maturity of adherens junctions.
来源 力学学报 ,2020,52(3):854-863 【核心库】
DOI 10.6052/0459-1879-20-011
关键词 粘着连接 ; 数学模型 ; 格子玻尔兹曼
地址

1. 宁波大学机械工程与力学学院, 浙江, 宁波, 315211  

2. 中国科学院力学研究所生物力学与生物工程中心, 中国科学院微重力重点实验室;;工程化构建与力学生物学北京市重点实验室, 北京, 100190  

3. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 生物物理学
基金 国家自然科学基金资助项目
文献收藏号 CSCD:6734914

参考文献 共 37 共2页

1.  Manibog K. Resolving the molecular mechanism of cadherin catch bond formation. Nature Communications,2014,5:1-11 CSCD被引 1    
2.  Pan Y. Differential growth triggers mechanical feedback that elevates Hippo signaling. Proceedings of the National Academy of Sciences,2016,113(45):E6974 CSCD被引 2    
3.  Braga V. Spatial integration of E-cadherin adhesion, signalling and the epithelial cytoskeleton. Current Opinion in Cell Biology,2016,42:138-145 CSCD被引 3    
4.  Wu Y. Cooperativity between trans and cis interactions in cadherin-mediated junction formation. Proceedings of the National Academy of Sciences of the United States of America,2010,107(41):17592-17597 CSCD被引 2    
5.  Dufour S. α-catenin, vinculin, and F-actin in strengthening E-cadherin cell-cell adhesions and mechanosensing. Cell Adhesion & Migration,2013,7(4):345-350 CSCD被引 1    
6.  Mccormack J. Cycling around cell-cell adhesion with Rho GTPase regulators. Journal of Cell Science,2013,126(2):379-391 CSCD被引 1    
7.  Yamada S. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell cell adhesion. The Journal of Cell Biology,2007,178(3):517-527 CSCD被引 8    
8.  Liang X. Current perspectives on cadherin-cytoskeleton interactions and dynamics. Cell Health and Cytoskeleton,2015,7:11-24 CSCD被引 1    
9.  Leerberg J. Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Current Biology,2014,24(15):1689-1699 CSCD被引 2    
10.  Lecuit T. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nature Cell Biology,2015,17(5):533-539 CSCD被引 11    
11.  Murrell M P. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proceedings of the National Academy of Sciences,2012,109(51):20820-20825 CSCD被引 2    
12.  Wu S K. Cortical F-actin stabilization generates apical-lateral patterns of junctional contractility that integrate cells into epithelia. Nature Cell Biology,2014,16(2):167-178 CSCD被引 2    
13.  Engl W. Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adherens junctions. Nature Cell Biology,2014,16(6):587-594 CSCD被引 3    
14.  Chu Y S. Force measurements in Ecadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. The Journal of Cell Biology,2004,167(6):1183-1194 CSCD被引 2    
15.  Chan C E. Traction dynamics of filopodia on compliant substrates. Science,2008,322(5908):1687-1691 CSCD被引 11    
16.  Carlier M F. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nature Reviews Molecular Cell Biology,2017,18:389-401 CSCD被引 3    
17.  Mogilner A. Regulation of actin dynamics in rapidly moving cells: A quantitative analysis. Biophysical Journal,2002,83(3):1237-1258 CSCD被引 2    
18.  Feng S L. Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness. Biomechanics and Modeling in Mechanobiology,2018,17(6):1611-1630 CSCD被引 1    
19.  Pal T K. Lattice Boltzmann simulation to study reaction diffusion processes in geological media. Barc Newsletter,2015:6-13 CSCD被引 1    
20.  Feng S L. Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis. Journal of Theoretical Biology,2014,363:235-246 CSCD被引 1    
引证文献 2

1 胡五龙 土壤水分布的孔隙尺度格子玻尔兹曼模拟研究 力学学报,2021,53(2):568-579
CSCD被引 4

2 陈亚君 真核细胞运动接触抑制行为的力学-化学耦合模拟 中国科学. 物理学, 力学, 天文学,2022,52(12):128711
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号