La_(30)Ce_(30)Al_(15)Co_(25)金属玻璃应力松弛行为
STRESS RELAXATION OF La_(30)Ce_(30)Al_(15)Co_(25) METALLIC GLASS
查看参考文献36篇
文摘
|
作为潜在的工程材料,金属玻璃在材料科学和凝聚态物理等领域引起广泛的研究兴趣.金属玻璃结构与性能的关系表明,金属玻璃的动态非均匀性与其黏弹性和塑性紧密相关.然而,宏观应力松弛行为与动态弛豫之间的物理图像并不清晰.与传统金属材料不同,金属玻璃的变形机理非常复杂.应力松弛是一种表征玻璃体系黏弹性和塑性变形机制的有效手段,从而探索结构和动态非均匀性.本研究以La_(30)Ce_(30)Al_(15)Co_(25)金属玻璃为模型体系,在较宽的温度窗口研究了其应力松弛行为.研究结果表明,与传统金属玻璃不同, La_(30)Ce_(30)Al_(15)Co_(25)金属玻璃具有明显的 β弛豫行为.基于Kohlarausch-Willams-Watts(KWW)方程的分析表明,金属玻璃应力松弛为动态不均匀过程;热动力学分析发现La_(30)Ce_(30)Al_(15)Co_(25)金属玻璃应力松弛存在显著的双阶段行为,即从高应力条件下应力驱动为主导的松弛行为,向低应力下热激活为主导的松弛行为发生转变.通过激活能谱模型分析表明,应力松弛单元的激活并非均匀,而是存在能量上的起伏,金属玻璃对于外力响应是一个渐进过程,具有动力学不均匀性.本研究进一步构建了金属玻璃的结构和动态非均匀性之间的关联,为研究金属玻璃的 α弛豫和 β弛豫提供了强有力的支撑. |
其他语种文摘
|
Metallic glass is a well-known engineering material that has been attracting tremendous research interest in materials science and condense matter physics. Early studies of the properties and structures of the metallic glasses showed that the dynamic heterogeneity is closely linked to the viscoelasticity and plasticity of metallic glasses. However, the physical landscape between the macroscopic stress relaxation behavior and the mechanical relaxation is still obscure. Different from the deformation mechanism of their crystalline counterparts, the deformation mechanism of metallic glasses is more complicated. To fully understand the mechanical properties of metallic glass, it is necessary to ascertain the structural characteristics of different spatial scales of metallic glass and evolution of structural characteristics with time. The significant importance is the connection between the macroscopic stress relaxation behavior and the dynamic mechanical relaxations (β relaxation, or α relaxation) in metallic glasses. Stress relaxation is a robust technique to characterize the viscoelastic and plastic mechanisms in glasses which can reflect their structural and dynamic heterogeneities. In the current research, La_(30)Ce_(30)Al_(15)Co_(25) metallic glass was used as a model system, dynamic mechanical processes and stress relaxation behavior were studied. Compared with other traditional metallic glasses, La_(30)Ce_(30)Al_(15)Co_(25) metallic glass shows a pronounced β relaxation process. The analysis based on the Kohlarausch-Willams-Watts (KWW) equation suggests that the stress relaxation process of metallic glass is a heterogeneous dynamic process. We observed an unusual two-stage stress relaxation phenomenon, consisting of the fast stress-driven event and the slow thermally activated event. The two-stage stress relaxation behavior is attributed the stress-driven event and thermally activated event to short-range atomic rearrangement, and long-range atomic diffusion, respectively. In addition, the analysis of the activation energy spectrum shows that the activation of the stress relaxation unit is not uniform, which corresponds to fluctuations in energy. This research is a step towards building a bridge linking the structural and dynamic heterogeneity of metallic glasses, and strongly supports the physical scenario of β to α relaxation. |
来源
|
力学学报
,2020,52(3):740-748 【核心库】
|
DOI
|
10.6052/0459-1879-20-013
|
关键词
|
金属玻璃
;
动态弛豫
;
应力松弛
;
结构非均匀性
;
激活能谱模型
|
地址
|
1.
西北工业大学力学与土木建筑学院, 西安, 710072
2.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
;
陕西省自然科学基金
;
中央高校基本科研业务费专项资金
;
西北工业大学硕士研究生创意创新种子基金
;
非线性力学国家重点实验室开放基金
|
文献收藏号
|
CSCD:6734904
|
参考文献 共
36
共2页
|
1.
汪卫华. 非晶态物质的本质和特性.
物理学进展,2013,33(5):177-351
|
CSCD被引
176
次
|
|
|
|
2.
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses.
Progress in Materials Science,2012,57(3):487-656
|
CSCD被引
144
次
|
|
|
|
3.
Qiao J C. Structural heterogeneities and mechanical behavior of amorphous alloys.
Progress in Materials Science,2019,104:250-329
|
CSCD被引
69
次
|
|
|
|
4.
Wang W H. Dynamic relaxations and relaxation-property relationships in metallic glasses.
Progress in Materials Science,2019,106:100561
|
CSCD被引
49
次
|
|
|
|
5.
管鹏飞. 不均匀性:非晶合金的灵魂.
物理学报,2017,66(17):176112-176112
|
CSCD被引
14
次
|
|
|
|
6.
郝奇. 锆基非晶合金的动态弛豫机制和高温流变行为.
力学学报,2020,52(2):360-368
|
CSCD被引
9
次
|
|
|
|
7.
Zhao L Z. Revealing localized plastic flow in apparent elastic region before yielding in metallic glasses.
Journal of Applied Physics,2015,118(24):244901
|
CSCD被引
4
次
|
|
|
|
8.
史荣豪. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测.
力学学报,2020,52(2):369-378
|
CSCD被引
2
次
|
|
|
|
9.
Yang X S. Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations.
Journal of the Mechanics and Physics of Solids,2016,94:191-206
|
CSCD被引
11
次
|
|
|
|
10.
Yang X S. Time-, stress-, and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations.
Acta Materialia,2016,108:252-263
|
CSCD被引
12
次
|
|
|
|
11.
王云江. 非晶态固体的结构可以决定性能吗?.
力学学报,2020,52(2):303-317
|
CSCD被引
13
次
|
|
|
|
12.
Wang Z. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass.
Nature Communications,2014,5:5823
|
CSCD被引
33
次
|
|
|
|
13.
Bobrov O P. Stress relaxation in an Zr_(52.5)Ti_5Cu_(17.9)Ni_(14.6)Al_(10) bulk metallic glass.
Physics of the Solid State,2004,46(3):470-473
|
CSCD被引
2
次
|
|
|
|
14.
Jiao W. Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses.
Applied Physics Letters,2013,103(8):081904
|
CSCD被引
9
次
|
|
|
|
15.
Lu Z. Classification of metallic glasses based on structural and dynamical heterogeneities by stress relaxation.
Science China Materials,2015,58(2):98-105
|
CSCD被引
4
次
|
|
|
|
16.
Wu Y C. The critical strain-a crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass.
Scripta Materialia,2017,134:75-79
|
CSCD被引
8
次
|
|
|
|
17.
Luo P. Temperature dependent evolution of dynamic heterogeneity in metallic glass.
Journal of Applied Physics,2017,121(13):135104
|
CSCD被引
8
次
|
|
|
|
18.
Luo P. Relaxation decoupling in metallic glasses at low temperatures.
Physical Review Letters,2017,118(22):225901
|
CSCD被引
24
次
|
|
|
|
19.
Li Y Z. Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses.
The Journal of Chemical Physics,2015,143(4):041104
|
CSCD被引
5
次
|
|
|
|
20.
Qiao J C. Transition from stress-driven to thermally activated stress relaxation in metallic glasses.
Physical Review B,2016,94(10):104203
|
CSCD被引
14
次
|
|
|
|
|