基于树木年轮定量重建过去50年贵州典型森林优势树种的地上生物量与生产力变化
Reconstruction of above-ground biomass and net primary productivity of dominant tree species in Guizhou forests over past five decades based on treering data
查看参考文献49篇
文摘
|
利用树木年轮宽度结合树木生物量方程,重建了贵州3个地区典型森林(2个常绿与落叶阔叶混交林和1个典型常绿阔叶林) 6个优势树种(天龙山:化香树Platycarya strobilacea、安顺润楠Machilus cavaleriei;茂兰:化香树、马尾松Pinus massoniana;雷公山:华山松Pinus armandii、白梓树Pterostyrax psilophyllus)以树木个体为单元的地上生物量(AGB)与地上净初级生产力(ANPP);比较了喀斯特与非喀斯特地区树木AGB与ANPP的差异;并研究了近50年气候变化对ANPP的影响。结果显示,针叶树的平均年轮宽度大于阔叶树,喀斯特地区针叶树和阔叶树的平均树木年轮宽度,分别小于非喀斯特地区针叶树和阔叶树的平均树木年轮宽度。喀斯特地区树木的AGB及其变异幅度均小于非喀斯特地区树木。近50年来,喀斯特地区阔叶树与针叶树的ANPP平均分别为(2.4±1.2) kg a~(-1)株~(-1)和(4.6±4.1) kg a~(-1)株~(-1),显著低于非喀斯特地区阔叶树与针叶树的(5.6±4.8) kg a~(-1)株~(-1)和(12.4±7.7) kg a~(-1)株~(-1)。喀斯特地区树木ANPP的增长趋势与年均温的相关性高于生长季降水,非喀斯特地区树木ANPP与年均温和生长季降水均显著相关,且不管是在喀斯特还是在非喀斯特地区,针叶树ANPP对气候指标的变化比阔叶树更敏感。 |
其他语种文摘
|
Tree-ring widths and allometric functions were used to reconstruct above-ground biomass (AGB) and net primary productivity (ANPP) of six dominant tree species (Tianlongshan Mt.: Platycarya strobilacea,Machilus cavaleriei; Maolan: Platycarya strobilacea,Pinus massoniana; Leigongshan Mt.: Pinus armandii,Pterostyrax psilophyllus) in three typical forests of Guizhou Province (karst evergreen and deciduous broadleaved mixed forests in two sites and another site of typical evergreen broadleaved forest). Similarity and dissimilarity of AGB and ANPP of different tree species,as well as the effects of climate change in the past five decades on ANPP were compared between karst and non-karst regions. The results showed that coniferous trees presented wider mean tree-ring widths than broadleaved trees. The mean ring-widths of coniferous trees and broadleaved trees in karst regions were narrower than those in non-karst region. The trees in karst regions indicated higher AGB and larger variation ranges than those in non-karst region. The ANPP of broadleaved trees and coniferous trees in karst regions were 2.4 ± 1.2 kg a~(-1) individual~(-1) and 4.6 ± 4.1 kg a~(-1) individual~(-1),respectively in the past five decades, which were significantly lower than those in non-karst region (5.6 ± 4.8 kg a~(-1) individual~(-1) and 12.4 ± 7.7 kg a~(-1) individual~(-1),respectively). Tree ANPP increase in karst regions was more related to mean annual temperature than growing season precipitation,and tree ANPP increase in non-karst region showed significant relationships with both mean annual temperature and growing season precipitation. ANPP of coniferous trees was more sensitive to climate change than that of broadleaved trees in both karst and non-karst regions. |
来源
|
生态学报
,2020,40(10):3441-3451 【核心库】
|
DOI
|
10.5846/stxb201903250558
|
关键词
|
年轮宽度
;
喀斯特常绿与落叶阔叶混交林
;
亚热带常绿阔叶林
;
地上生物量与生产力
;
气候变化
|
地址
|
1.
浙江师范大学化学与生命科学学院, 金华, 321004
2.
中国科学院普定喀斯特生态系统观测研究站, 中国科学院普定喀斯特生态系统观测研究站, 安顺, 561000
3.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
4.
荔波县林业局, 荔波, 558400
5.
中国科学院青藏高原研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0933 |
学科
|
林业 |
基金
|
国家自然科学基金面上项目
;
国家重点研发计划项目
|
文献收藏号
|
CSCD:6730224
|
参考文献 共
49
共3页
|
1.
Melillo J M. Global climate change and terrestrial net primary production.
Nature,1993,363(6426):234-240
|
CSCD被引
250
次
|
|
|
|
2.
Fang J Y. Changes in forest biomass carbon storage in China between 1949 and 1998.
Science,2001,292(5525):2320-2322
|
CSCD被引
703
次
|
|
|
|
3.
Schimel D S. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems.
Nature,2001,414(6860):169-172
|
CSCD被引
230
次
|
|
|
|
4.
Heimann M. Terrestrial ecosystem carbon dynamics and climate feedbacks.
Nature,2008,451(7176):289-292
|
CSCD被引
134
次
|
|
|
|
5.
Pan Y D. A large and persistent carbon sink in the world's forests.
Science,2011,333(6045):988-993
|
CSCD被引
275
次
|
|
|
|
6.
Fang O Y. The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years.
Trees,2016,30(1):281-294
|
CSCD被引
7
次
|
|
|
|
7.
Douglass A E. Tree rings and climate.
The Scientific Monthly,1925,21(1):95-99
|
CSCD被引
1
次
|
|
|
|
8.
Schweingruber F H.
Tree Rings-Basics and Applications of Dendrochronology,1988
|
CSCD被引
2
次
|
|
|
|
9.
Babst F. A tree-ring perspective on the terrestrial carbon cycle.
Oecologia,2014,176(2):307-322
|
CSCD被引
10
次
|
|
|
|
10.
王婷. 树木年轮宽度与气候变化关系研究进展.
植物生态学报,2003,27(1):23-33
|
CSCD被引
92
次
|
|
|
|
11.
郑淑霞. 树木年轮与气候变化关系研究.
林业科学,2006,42(6):100-107
|
CSCD被引
18
次
|
|
|
|
12.
Liang E Y. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau.
Global and Planetary Change,2008,61(3/4):313-320
|
CSCD被引
50
次
|
|
|
|
13.
Zhang Z H. Tree-rings,a key ecological indicator of environment and climate change.
Ecological Indicators,2015,51:107-116
|
CSCD被引
3
次
|
|
|
|
14.
Hughes M K.
Dendroclimatology: Progress and Prospects,2011
|
CSCD被引
1
次
|
|
|
|
15.
George S S. An overview of tree-ring width records across the Northern Hemisphere.
Quaternary Science Reviews,2014,95:132-150
|
CSCD被引
16
次
|
|
|
|
16.
许海洋. 我国西南地区喀斯特森林树木年轮对气候变化的响应.
地球与环境,2018,46(1):23-32
|
CSCD被引
3
次
|
|
|
|
17.
刘敏. 不同径级红松径向生长对气候变化的响应.
应用生态学报,2018,29(11):3530-3540
|
CSCD被引
13
次
|
|
|
|
18.
石松林. 气候变暖抑制西藏拉萨河大果圆柏树木生长.
生态学报,2018,38(24):8964-8972
|
CSCD被引
16
次
|
|
|
|
19.
Babst F. Toward consistent measurements of carbon accumulation: a multi-site assessment of biomass and basal area increment across Europe.
Dendrochronologia,2014,32(2):153-161
|
CSCD被引
5
次
|
|
|
|
20.
吴祥定. 采用树轮宽度资料分析气候变化对树木生长量影响的尝试.
地理学报,1996,63(S1):92-101
|
CSCD被引
45
次
|
|
|
|
|