金属玻璃基复合材料的变形行为及本构关系研究综述
REVIEW ON THE DEFORMATION BEHAVIOR AND CONSTITUTIVE EQUATIONS OF METALLIC GLASS MATRIX COMPOSITES
查看参考文献96篇
文摘
|
金属玻璃及其复合材料因其优良的力学性能而具有良好的应用前景,相关研究方兴未艾.本文主要总结国内外的研究成果并结合本课题组的最新研究工作,针对块体金属玻璃基复合材料的变形行为、增韧机理和本构关系研究现状进行较为全面的综述.首先,对近几十年来在块体金属玻璃基体材料的变形行为与失效机理以及本构关系研究方面的丰硕成果进行简要回顾.其次,从实验研究和数值模拟两方面,重点对金属玻璃基复合材料的变形行为与失效机理研究成果进行介绍,总结了金属玻璃基复合材料的塑性变形、增韧机理及影响因素.然后,对金属玻璃基复合材料的本构关系研究最新进展进行评述,重点介绍了均匀化方法在该领域的应用.作为代表,较为详细地介绍了作者新近提出的一个二次均匀化的方法,并在此基础上,结合纳米孔洞作为自变量的失效判据而建立了本构模型,该模型对金属玻璃基复合材料的变形和失效行为进行了合理预测.最后,对该领域的研究现状进行简单的总结,并对未来的研究问题进行展望. |
其他语种文摘
|
Metallic glass and metallic glass matrix composites have good application prospects because of their excellent mechanical properties, and now more and more researches have been conducting on them. The deformation behavior, toughening mechanism and constitutive relationship of metallic glass matrix composites are summarized and reviewed in this paper, based on the existing research results in literature by other groups and the latest work done by the authors. Firstly, the research progress in the deformation behavior, failure mechanism and constitutive relation of metallic glass in recent decades is briefly reviewed. Then, the state-of-the-arts in the deformation behavior and failure mechanism of metallic glass matrix composites are introduced from the aspects of experiments and numerical simulation, and the plastic deformation, toughening mechanism and their correspondent influencing factors of metallic glass matrix composites are summarized. Furthermore, the existing studies on the constitutive equations of metallic glass matrix composites are reviewed, with emphasis on the application of homogenization method in this field. In addition, a two-stepped homogenization method proposed by the authors is introduced in more details as a representative approach, and then the constitutive model established on the two-stepped homogenization method and with a help of a failure criterion obtained by introducing a concentration of nano-voids as an internal variable is addressed. The deformation and failure behavior of metallic glass matrix composites are predicted reasonably by the proposed constitutive model. Finally, the research progress of this field is briefly summarized, and some future topics are suggested. |
来源
|
力学学报
,2020,52(2):318-332 【核心库】
|
DOI
|
10.6052/0459-1879-20-038
|
关键词
|
金属玻璃基复合材料
;
变形行为
;
增韧机制
;
失效机理
;
本构关系
|
地址
|
1.
西南交通大学力学与工程学院, 应用力学与结构安全四川省重点实验室, 成都, 610031
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:6729719
|
参考文献 共
96
共5页
|
1.
Klement W. Non-crystalline structure in solidified gold-silicon alloys.
Nature,1960,187:869-870
|
CSCD被引
247
次
|
|
|
|
2.
Inoue A. Al-La-Ni Amorphous alloys with a wide supercooled liquid region.
Mater Trans, JIM,1989,30:965-972
|
CSCD被引
93
次
|
|
|
|
3.
Peker A. A highly processable metallic glass: Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5).
Appl Phys Lett,1993,63:2342-2344
|
CSCD被引
286
次
|
|
|
|
4.
胡壮麒. 块状非晶合金及其复合材料研究进展.
金属学报,2010,46(11):1391-1421
|
CSCD被引
31
次
|
|
|
|
5.
Choi-yim H. Synthesis and characterization of particulate reinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) bulk metallic composites.
Acta Mater,1999,47:2455-2462
|
CSCD被引
36
次
|
|
|
|
6.
Chen G. Large-sized Zr-based bulk-metallicglass composite with enhanced tensile properties.
Intermetallics,2012,28:25-33
|
CSCD被引
16
次
|
|
|
|
7.
Qiao J W. Tensile deformation micromechanisms for bulk metallic glass matrix composites: From workhardening to softening.
Acta Mater,2011,59:4126-4137
|
CSCD被引
37
次
|
|
|
|
8.
Qiao J W. Metallic glass matrix composites.
Mater Sci Eng R,2016,100:1-69
|
CSCD被引
37
次
|
|
|
|
9.
Kato H. Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloys containing ZrC particles.
Mater, Trans,1997,38:793-800
|
CSCD被引
21
次
|
|
|
|
10.
Ma G. Wetting behavior of CuZr-based BMGs/alumina system.
J Alloys and Compounds,2008,462:343-346
|
CSCD被引
1
次
|
|
|
|
11.
Liu N. Wetting behavior of Zr-based bulk metallic glasses on W substrate.
Mater Lett,2008,62:3195-3197
|
CSCD被引
4
次
|
|
|
|
12.
Li J B. Significant plasticity enhancement of Zr Cu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles.
Mater Sci Eng A,2012,551:249-254
|
CSCD被引
6
次
|
|
|
|
13.
Trexler M M. Mechanical properties of bulk metallic glasses.
Progr Mater Sci,2010,55:759-839
|
CSCD被引
74
次
|
|
|
|
14.
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses.
Progress in Materials Science,2012,57:487-656
|
CSCD被引
144
次
|
|
|
|
15.
Dai L H. Shear Banding in Bulk Metallic Glasses.
Adiabatic Shear Localization: Frontiers and Advances,2012:311-361
|
CSCD被引
4
次
|
|
|
|
16.
蒋敏强. 非晶合金塑性理论研究进展.
中国材料进展,2014,33(5):257-264
|
CSCD被引
4
次
|
|
|
|
17.
雷现奇. 金属非晶的强度和变形特性.
固体力学学报,2016,37(4):312-339
|
CSCD被引
5
次
|
|
|
|
18.
Volkert C A. Effect of sample size on deformation in amorphous metals.
J Appl Phys,2008,103:083539
|
CSCD被引
18
次
|
|
|
|
19.
Wu F. Size-dependent shear fracture and global tensile plasticity of metallic glasses.
Acta Mater,2009,57:257-266
|
CSCD被引
1
次
|
|
|
|
20.
Jang D. Transition from a strong-yet-brittle to a strongerand-ductile state by size reduction of metallic glasses.
Nature Mater,2010,9:215-219
|
CSCD被引
56
次
|
|
|
|
|