城镇化区域无人机低空航路网迭代构建的理论体系与技术路径
Iterative construction of UAV low-altitude air route network in an urbanized region: Theoretical system and technical roadmap
查看参考文献41篇
文摘
|
由于低空环境复杂,当前以无人机为应用主体的低空空域资源开发安全性和利用效率较低。而随着无人机数量的迅猛发展和商业化应用的快速扩张,旺盛的飞行需求与有限的飞行空间在低空的矛盾日益突出,如何安全、高效地管理无人机低空活动成为突出问题。目前各国都在探索解决途径,其中无人机低空航路是一种由中国科学院率先提出并得到业界和中国民用航空局认可的无人机低空交通和低空资源高效利用的综合解决方案。然而,这一概念还处在探索阶段,如何构建还不太明晰,尤其是对于地表环境复杂和高动态变化的城镇化区域,如何快速获取高精度的地理信息以满足无人机安全、高效飞行也是一大难题。鉴于遥感技术在航路的敏感信息提取与深化处理方面呈现出良好的应用前景,本文提出一种基于遥感和地理信息技术的城镇化区域低空公共航路网的高效迭代构建方法,并从理论支撑和已有研究基础论证了该方法的可行性。该研究技术路径主要包括基于地面路网生成具有多高度层的I级航路网,以充分利用地面交通设施;利用航路正约束地理要素生成II级航路网,如沿路的城市绿地和水域;规避负约束地理要素构建III级航路网,主要包括建筑物、通信盲区和电力线(杆)等;最后,通过仿真飞行和实际飞行测试分别生成IV、V级航路网,通过实际量测对比分析来检验无人机飞行的环境地图,保证飞行的安全性。以上方法基于遥感、地理信息、航空、交通等交叉学科解决无人机低空运行难题,为构建无人机低空航路网提供了一种新思路。更进一步讲,本文在低空领域运用地理学方法构建无人机航路网,是继无人机遥感应用之后无人机在地理学应用的又一大突破,同时也拓展了地理学的研究范畴,必将推动地理科学发展。 |
其他语种文摘
|
The complexity in low altitude has hindered the development and utilization of lowaltitude airspace resources with UAVs as the main application users. With the rapid increase of UAV numbers and the rapid expansion of commercial application of UAVs, the conflict between the increasing flight demand and the limited flight space is increasingly prominent at low altitude. Therefore, how to conduct the activities of UAVs at low-altitude safely and efficiently is a problem to be urgently solved. Many countries or regions are looking for solutions. Among the proposed solutions or methods, the low-altitude public air route network of UAVs, which is proposed firstly by the Chinese Academy of Sciences (CAS) to orderly manage UAV low-altitude traffic and efficiently utilize low-altitude resources, has been widely recognized. However, the concept is still in the early exporting stage and is not clear on how to construct. In addition, how to quickly acquire high-precision geographic information to support safe and efficient flights of UAV in low altitude, especially in urban areas with complex and high-dynamic changeable surface environment, is also difficult. In view of the promising application of remote sensing (RS) technology in extracting and processing air route sensitive elements, this paper proposes a method to efficiently and iteratively construct the low-altitude public air route network by RS and geographic information technology in urban areas, and then demonstrates the feasibility of this method from theoretical support and existing research foundation. The technical roadmap includes four steps: (1) generating the first-level air route network based on ground roads to make full use of ground traffic facilities; (2) constructing the second-level air route network by using positive constraints of air routes, such as green lands and waters; (3) constructing the third-level air route network by avoiding negative constraints of air routes, including buildings, weak-communication areas and power lines (poles); (4) generating the fourth-and fifth-level air route network by simulated flight and practical flight tests. Comparative analysis between actual measurement and simulated environment map is conducted to ensure safe UAV flights. The method proposed above comprehensively utilizes interdisciplinary technologies such as RS, geographic information system (GIS), aviation and transportation, and provides a new way to make safe and efficient UAV operations in low altitude. Furthermore, this paper uses geography method to construct UAV air route network in low altitude, which is another breakthrough in the application of UAVs in geography after UAV remote sensing application. It also expands the research scope of geography and will certainly promote the development of geographic science. |
来源
|
地理学报
,2020,75(5):917-930 【核心库】
|
DOI
|
10.11821/dlxb202005003
|
关键词
|
无人机
;
城镇化区域
;
低空航路网
;
迭代构建
;
遥感提取
|
地址
|
1.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100190
3.
天津中科无人机应用研究院, 天津, 301800
4.
中国科学院无人机应用与管控研究中心, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
航空 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
天津市智能制造专项
|
文献收藏号
|
CSCD:6729561
|
参考文献 共
41
共3页
|
1.
Alex F. Drones are everywhere. Get used to it.
Time,2018,22(191):24-25
|
CSCD被引
1
次
|
|
|
|
2.
Stolaroff J K. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery.
Nature Communication,2018,9(1):1-13
|
CSCD被引
6
次
|
|
|
|
3.
Floreano D. Science, technology and the future of small autonomous drones.
Nature,2015,521(7553):460-466
|
CSCD被引
53
次
|
|
|
|
4.
.
无人机适航审定.无人机实名登记月报情况(2019-7),2019
|
CSCD被引
1
次
|
|
|
|
5.
民用无人机检验中心.
2019年第二季度无人机云数据统计,2019
|
CSCD被引
1
次
|
|
|
|
6.
Mohamed N. Unmanned aerial vehicles applications in future smart cities.
Technological Forecasting and Social Change,2018:1-15
|
CSCD被引
3
次
|
|
|
|
7.
Kopardekar P.
Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling low-altitude airspace and UAS operations,2014
|
CSCD被引
1
次
|
|
|
|
8.
SESAR.
U-Space Blueprint,2017:2-5
|
CSCD被引
2
次
|
|
|
|
9.
张丰蘩. 无人机管控:政策与科技并行.
中国民航报,2019
|
CSCD被引
1
次
|
|
|
|
10.
Mohammed S M F B. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations.
AIAA SciTech Forum,2018
|
CSCD被引
1
次
|
|
|
|
11.
柏艺琴.
中国无人机运行数据统计报告,2019:5
|
CSCD被引
2
次
|
|
|
|
12.
中国民用航空局.
无人机云系统接口数据规范(MH/T 2009-2017),2017
|
CSCD被引
1
次
|
|
|
|
13.
中国民用航空局.
关于促进民用无人驾驶航空发展的指导意见(征求意见稿),2019
|
CSCD被引
2
次
|
|
|
|
14.
IEEE.
1-Standard for a framework for structuring low altitude airspace for unmanned aerial vehicles (UAV) operations. 2019,1939
|
CSCD被引
1
次
|
|
|
|
15.
廖小罕. 基于地理信息的无人机低空公共航路规划研究.
无人机,2018(2):45-49
|
CSCD被引
9
次
|
|
|
|
16.
徐业刚. 民航局颁发首张城市无人机试运行"牌照".
中国民航报,2019
|
CSCD被引
1
次
|
|
|
|
17.
迅蚁.
中国无人机物流航线网络规划研讨会初次在杭举行,2019
|
CSCD被引
1
次
|
|
|
|
18.
Handler C H.
New York state creates nation's first air corridor for unmanned aerial vehicles,2018
|
CSCD被引
3
次
|
|
|
|
19.
Airbus.
Skyways: Urban air delivery explored,2017
|
CSCD被引
1
次
|
|
|
|
20.
鹿明. 面向中国洪涝灾害应急监测的无人机空港布局.
地球信息科学学报,2019,21(6):854-864
|
CSCD被引
6
次
|
|
|
|
|