利用自研阿秒条纹相机测得159as孤立阿秒脉冲
Isolated Attosecond Pulse with 159 as Duration Measured by Home Built Attosecond Streaking Camera
查看参考文献13篇
文摘
|
为了精确地测量阿秒脉冲的特性,自主研制了一套具有高能量分辨率的阿秒条纹相机,该相机采用了电子飞行距离长达2m的磁瓶式结构电子飞行时间谱仪,可在提高能量分辨率的同时具有较高的光电子收集效率;在该设备的光路系统中实现了NIR飞秒脉冲与XUV阿秒脉冲延时扫描的稳定精度<20as(均方根)。实验中采用双光选通门技术整形飞秒脉冲的光电场,在氖气池中产生了孤立阿秒脉冲。利用上述阿秒条纹相机测量该脉冲,获得了阿秒光电子条纹谱,通过基于单频滤波的相位重构算法得到159as的孤立阿秒脉冲。 |
其他语种文摘
|
In order to accurately measure the characteristics of attosecond pulses,we have independently developed a set of attosecond streaking camera with high energy resolution.The device adopts an electronic time-of-flight spectrometer with a magnetic bottle structure and an electronic flight distance of up to 2m.Based on the above design,the spectrometer has high energy resolution and collection efficiency.The stability accuracy of delayed scanning of NIR femtosecond pulses and XUV attosecond pulses is smaller than 20as(root-mean-square)in optical system of the device.A double optical gating technology was used to shape the optical electric field of the femtosecond pulses,and an isolated attosecond pulse was generated in the Ne gas cell.The attosecond streaking spectrogram was obtained by the attosecond streaking camera.An isolated 159-as attosecond pulse was achieved through phase retrieval by omega oscillation filtering(PROOF). |
来源
|
中国激光
,2020,47(4):0415002 【核心库】
|
DOI
|
10.3788/CJL202047.0415002
|
关键词
|
超快光学
;
超快激光
;
阿秒脉冲
;
阿秒条纹相机
;
阿秒测量
;
高次谐波产生
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
中国科学院光电研究院, 北京, 100094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
物理学 |
基金
|
国家重点研发计划
;
自然科学基金重大项目
;
中国科学院西部青年学者A类项目(院内)
;
中国科学院科研仪器设备研制项目
;
中国科学院国家外国专家局创新团队国际合作伙伴计划
|
文献收藏号
|
CSCD:6716248
|
参考文献 共
13
共1页
|
1.
Hentschel M. Attosecond metrology.
Nature,2001,414(6863):509-513
|
CSCD被引
245
次
|
|
|
|
2.
Kienberger R. Atomic transient recorder.
Nature,2004,427(6977):817-821
|
CSCD被引
94
次
|
|
|
|
3.
Goulielmakis E. Single-cycle nonlinear optics.
Science,2008,320(5883):1614-1617
|
CSCD被引
191
次
|
|
|
|
4.
Sansone G. Isolated single-cycle attosecond pulses.
Science,2006,314(5798):443-446
|
CSCD被引
172
次
|
|
|
|
5.
Zhao K. Tailoring a 67 attosecond pulse through advantageous phasemismatch.
Optics Letters,2012,37(18):3891
|
CSCD被引
89
次
|
|
|
|
6.
汪丽. 共振增强单色高次谐波产生.
中国激光,2019,46(10):1001003
|
CSCD被引
4
次
|
|
|
|
7.
Li J. 53-attosecond X-ray pulses reach the carbon K-edge.
Nature Communications,2017,8:186
|
CSCD被引
65
次
|
|
|
|
8.
Gaumnitz T. Streaking of 43-attosecond soft-X-ray pulses generated by apassively CEP-stable mid-infrared driver.
Optics Express,2017,25(22):27506
|
CSCD被引
91
次
|
|
|
|
9.
张路遥. 采用多喷嘴阵列产生高亮度高次谐波.
中国激光,2017,44(10):1001002
|
CSCD被引
4
次
|
|
|
|
10.
Zhan M J. Generation and Measurement of Isolated 160-Attosecond XUV Laser Pulses at 82 eV.
Chinese Physics Letters,2013,30(9):093201
|
CSCD被引
27
次
|
|
|
|
11.
Chang Z H. Controlling attosecond pulse generation with a double optical gating.
Physical Review A,2007,76(5):051403
|
CSCD被引
9
次
|
|
|
|
12.
Itatani J. Attosecond streak camera.
Physical Review Letters,2002,88(17):173903
|
CSCD被引
53
次
|
|
|
|
13.
Chini M. Characterizing ultrabroadband attosecond lasers.
Optics Express,2010,18(12):13006
|
CSCD被引
14
次
|
|
|
|
|