弱有限元方法在线弹性问题中的应用
WEAK GALERKIN FINITE ELEMENT METHOD FOR LINEAR ELASTICITY PROBLEMS
查看参考文献84篇
文摘
|
本文考虑弱有限元(简称WG)方法在线弹性问题中的应用.WG方法是传统有限元方法的推广,用于偏微分方程的数值求解.和传统有限元一样,它的基本思想源于变分原理.WG方法的特点是使用在剖分单元内部和剖分单元边界上分别有定义的分片多项式函数(即弱函数)作为近似函数来逼近真解,并针对弱函数定义相应的弱微分算子代入数值格式进行计算.除此之外,WG方法允许在数值格式中引进稳定子以实现近似函数的弱连续性.WG方法具有允许使用任意多边形或多面体剖分,数值格式与逼近函数构造简单,易于满足相应的稳定性条件等优点.本文考虑WG方法在求解线弹性问题中的应用.围绕线弹性问题数值求解中常见的三个问题,即:数值格式的强制性,闭锁性,应力张量的对称性介绍WG方法在线弹性问题求解中的应用. |
其他语种文摘
|
This article considers the application of the weak Galerkin finite element (WG) method to linear elasticity problems. The WG method is a generalization of the traditional finite element method, which is used to solve numerical solutions of partial differential equations. In WG, the weak function, a piecewise polynomial function that is defined both inside the element and on the boundary of the element, is used as an approximate function and weak differential operators are given correspondingly. Moreover, stabilizers are introduced to keep the weak continuity of the approximate function. In the WG method, partitions could be arbitrary polygons or polyhedrons that satisfies the shape regular conditions. In addition the numerical format and the approximate function are easy to construct. In this paper, we introduce the application of the WG method in solving linear elasticity problems by solving three common problems in the numerical methods for linear elasticity problems, namely: the coerciveness, locking property, and the symmetry of stress tensor. |
来源
|
计算数学
,2020,42(1):1-17 【核心库】
|
关键词
|
弱有限元方法
;
线弹性方程
;
闭锁现象
;
混合有限元方法
|
地址
|
吉林大学数学学院, 长春, 130012
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-7791 |
学科
|
数学 |
基金
|
国家自然科学基金
;
中国教育部长江学者计划以及吉林大学符号计算与知识工程教育部重点实验室等资助
|
文献收藏号
|
CSCD:6711137
|
参考文献 共
84
共5页
|
1.
Amara M. Equilibrium finite elements for the linear elastic problem.
Numer. Math,1979,33:367-383
|
CSCD被引
4
次
|
|
|
|
2.
Arnold D N. Unified analysis of discontinuous Galerkin methods for elliptic problems.
SIAM J. Numer. Anal,2002,39:1749-1779
|
CSCD被引
74
次
|
|
|
|
3.
Arnold D N. PEERS, a new mixed finite element for plane elasticity.
Japan J. Appl. Math,1984,1:347-367
|
CSCD被引
15
次
|
|
|
|
4.
Arnold D N. Well-posedness of the fundamental boundary value problems for constained anisotropic elastic materials.
Arch. Rational Mech. Anal,1987,98:143-165
|
CSCD被引
2
次
|
|
|
|
5.
Arnold D N. Nonconforming mixed elements for elasticity, Dedicated to Jim Douglas, Jr. on the occasion of his 75th birthday.
Math. Models Methods Appl. Sci,2003,13:295-307
|
CSCD被引
7
次
|
|
|
|
6.
Babuska I. Locking effects in the finite element approximation of elasticity problems.
Numer. Math,1992,62:439-463
|
CSCD被引
18
次
|
|
|
|
7.
Bao G. A robust numerical method for the random interface grating problem via shape calculus, weak Galerkin method, and low-rank approximation.
J. Sci. Comp,2018:1-24
|
CSCD被引
1
次
|
|
|
|
8.
Beirao da V L. Basic principles of virtual element methods.
Math. Models Methods Appl. Sci,2013,23(1):199-214
|
CSCD被引
19
次
|
|
|
|
9.
Beirao da V L. Virtual elements for linear elasticity problems.
SIAM J. Numer. Anal,2013,51:794-812
|
CSCD被引
11
次
|
|
|
|
10.
Brenner S C. Korn's inequalities for piecewise H~1 vector fields.
Math. Comp,2003,73:1067-1087
|
CSCD被引
10
次
|
|
|
|
11.
Brenner S C. Linear finite element methods for planar linear elasticity.
Math. Comp,1992,59:321-338
|
CSCD被引
34
次
|
|
|
|
12.
Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.
Rev. Francaise Automat. Informat. Recherche Operationnelle Ser,1974,8:129-151
|
CSCD被引
52
次
|
|
|
|
13.
Brezzi F.
Mixed and Hybrid Finite Element Methods,1991
|
CSCD被引
173
次
|
|
|
|
14.
Brezzi F. Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes.
SIAM J. Numer. Anal,2005,43(5):1872-1896
|
CSCD被引
7
次
|
|
|
|
15.
Cai Z. First-order system least squares for the Stokes equations, with application to linear elasticity.
SIAM J. Numer. Anal,1997,34:1727-1741
|
CSCD被引
8
次
|
|
|
|
16.
Chen G. ROBUST GLOBALLY DIVERGENCE-FREE WEAK GALERKIN METHODS FOR STOKES EQUATIONS.
J. Comput. Math,2016,34:549-572
|
CSCD被引
14
次
|
|
|
|
17.
Chen G. A robust weak Galerkin finite element method for linear elasticity with strong symmeric stresses.
Comput. Methods Appl. Math,2016,16:389-408
|
CSCD被引
10
次
|
|
|
|
18.
Chen L. An auxiliary space multigrid preconditioner for the weak Galerkin method.
Comput. Math. Appl,2015,70(4):330-344
|
CSCD被引
6
次
|
|
|
|
19.
Cockburn B. Analysis of HDG methods for Stokes flow.
Math. Comput,2011,80(274):723-760
|
CSCD被引
2
次
|
|
|
|
20.
Guan Q. Weak Galerkin finite element methods for a second-order elliptic variational inequality.
Comput. Methods Appl. Mech. Engrg,2018,337:677-688
|
CSCD被引
3
次
|
|
|
|
|