原地生成宇宙成因核素测年技术思考(四):核素浓度年份化数列累加方法探讨
Consideration on in Situ Produced Cosmogenic Nuclide Dating Techniques(4): Discussion on the Accumulation Method of Nuclide Concentration in Annualized Data
查看参考文献31篇
文摘
|
原地生成宇宙成因核素测年技术中,计算核素浓度的传统通用等式假设了地表侵蚀速率(参数ε)及样品的位置在暴露期间保持不变,从而简化了计算过程。然而这种假设可能并不符合复杂地质背景的实际情况,从而造成计算结果误差较大,与其他测年方法结果也难以相互比较和匹配。本文利用将核素总浓度按年份分解为每年生成的浓度,经衰变和侵蚀的综合影响后至今剩余的浓度(称为年份净剩余浓度),组成数列累加的办法,分别推导了地表样品在高程以及侵蚀速率变化情况下的核素浓度计算等式。在此基础上,给出了地表生成速率和侵蚀速率逐年变化情况下的通用浓度年份化累加等式。最后讨论了传统浓度计算等式中的参数ε(侵蚀速率)的地质意义,明确了ε是一个积分中值,并不代表暴露期间的算术平均侵蚀速率,而是每年的侵蚀速率以自然指数加权的复杂方式(即T年前的那一年的生成浓度将乘以e-(λ+ρε Λ)(T-1))影响到样品的最终浓度值。 |
其他语种文摘
|
It is assumed that the surface erosion rate(ε)and position of samples are constant during exposure in traditional formula of in-situ cosmogenic nuclide dating technology,thus calculation is simplified.However,such a hypothesis may be inconsistent with actual complex geological background,which results in big errors and cannot be compared with dating results of other methods.To solve this problem,this work decomposes the total concentration of nuclides into the concentration generated each year and the remaining concentration by decay and erosion(called net residual concentration for the year),then these data are accumulated into a sequence.Equations of nuclide concentration under the change of sample elevation and erosion rate are derived,respectively.The accumulation equation of the concentration is given based on the varying surface production rate and erosion rate each year.The geological meaning of the parameter ε(erosion rate)in the traditional concentration formula is discussed.It is clarified that the erosion rate for a given year affects the final concentration of the sample in a complex way by natural exponential weighting(the annual concentration of T years ago is multiplied by e-(λ+ρε Λ)(T-1)),which is integral mean value rather than the arithmetic mean erosion rate in the period of exposure. |
来源
|
地质与勘探
,2020,56(1):182-189 【核心库】
|
DOI
|
10.12134/j.dzykt.2020.01.018
|
关键词
|
原地生成
;
宇宙成因核素
;
浓度年份分解
;
计算等式
;
侵蚀速率
|
地址
|
1.
中国冶金地质总局矿产资源研究院, 北京, 101300
2.
南京大学地球科学与工程学院, 江苏, 南京, 210023
3.
中国科学院地球环境研究所, 陕西, 西安, 710061
4.
西安加速质谱中心, 陕西, 西安, 710061
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0495-5331 |
学科
|
物理学 |
基金
|
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:6700084
|
参考文献 共
31
共2页
|
1.
Ackert R P Jr. Age and uplift rates of Sirius Group sediments in the Dominion Range,Antarctica,from surface exposure dating and geomorphology.
Global and Planetary Change,2004,42(1/4):207-225
|
CSCD被引
2
次
|
|
|
|
2.
Altmaier M. Glaciationhistory of Queen Maud Land(Antarctica) reconstructed from in-situ produced cosmogenic10Be,26Al and 21Ne.
Polar Science,2010,4(1):42-61
|
CSCD被引
11
次
|
|
|
|
3.
Balco G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology,1990-2010.
Quaternary Science Reviews,2011,30(1/2):3-27
|
CSCD被引
24
次
|
|
|
|
4.
Bierman P R. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: A multiple nuclide approach.
Geomorphology,1999,27:25-39
|
CSCD被引
12
次
|
|
|
|
5.
Blanckenburg F V. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment.
Earth & Planetary Science Letters,2005,237(3/4):0-479
|
CSCD被引
16
次
|
|
|
|
6.
Cowie P A. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults.
Scientific Reports,2017,7:44858
|
CSCD被引
7
次
|
|
|
|
7.
Corbett L B. Analysis of multiple cosmogenic nuclides constrains Laurentide Ice Sheet history and process on Mt. Mansfield,Vermont's highest peak.
Quaternary Science Reviews,2019,205:234-246
|
CSCD被引
1
次
|
|
|
|
8.
Dunai T J. Scaling factors for production rates of in situ produced cosmogenic nuclides: A critical reevaluation.
Earth and Planetary Science Letters,2000,176:157-169
|
CSCD被引
27
次
|
|
|
|
9.
Dong Guocheng. Mid-late Pleistocene glacial evolution in the Grove Mountains,East Antarctica,constraints from cosmogenic 10Be surface exposure dating of glacial erratic cobbles.
Quaternary Science Reviews,2016,145:71-81
|
CSCD被引
5
次
|
|
|
|
10.
Gosse J C. Terrestrial in situ cosmogenic nuclides: Theory and application.
Quaternary Science Reviews,2001,20(14):1475-1560
|
CSCD被引
108
次
|
|
|
|
11.
Heimsath A M. Late Quaternary erosion in Southeastern Australia: A field example using cosmogenic nuclides.
Quaternary International,2001,83(1):169-185
|
CSCD被引
10
次
|
|
|
|
12.
Huang Feixin. Fluctuation history of the interior East Antarctic Ice Sheet since Mid-Pliocene.
Antarctic Science,2008,20(2):197-203
|
CSCD被引
4
次
|
|
|
|
13.
Kong Ping. Erosion in northwest Tibet from in-situ-produced cosmogenic 10Be and 26Al in bedrock.
Earth Surface Processes and Landforms,2007,32(1):116-125
|
CSCD被引
24
次
|
|
|
|
14.
Kong Ping. Late Miocene ice sheet elevation in the Grove Mountains,East Antarctica,inferred from cosmogenic 21Ne-10Be-26Al.
Global Planetary Change,2010,72(1):50-54
|
CSCD被引
9
次
|
|
|
|
15.
Lal D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models.
Earth Planetary Science Letters,1991,104(91):424-439
|
CSCD被引
128
次
|
|
|
|
16.
Marchant D R. Pliocene paleoclimate and East Antarctic Ice-Sheet history from surficial ash deposits.
Science,1993,260(5108):667-670
|
CSCD被引
2
次
|
|
|
|
17.
Morgan D. Quantifying regolith erosion rates with cosmogenic nuclides 10Be and 26Al in the McMurdo Dry Valleys,Antarctica.
Journal of Geophysical Research: Earth Surface,2010,115:F03037
|
CSCD被引
2
次
|
|
|
|
18.
Nishiizumi K. Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates.
Nature,1986,319:134-136
|
CSCD被引
18
次
|
|
|
|
19.
Nishiizumi K. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks.
Journal of Geophysical Research B,1989,94:17907-17915
|
CSCD被引
24
次
|
|
|
|
20.
Nishiizumi K. Cosmic ray produced 10Be and 26Al in Antarctic rocks: Exposure and erosion history.
Earthand Planetary Science Letters,1991,104(2/4):440-454
|
CSCD被引
35
次
|
|
|
|
|