X80低温用高强度管线钢的工艺与组织性能试验
Experimental on process,microstructure and mechanical properties of X80high strength pipeline steel for low temperature
查看参考文献27篇
文摘
|
随着管道向低温地区的延伸,对输送管线的低温性能提出了更高的要求,突破寒冷地区用高强度管线钢强韧性配合的瓶颈需要对现有管线钢材料的组织结构设计和TMCP工艺进行优化。为研究TMCP关键参数和复杂组织之间的关系规律从而指导实际轧制过程,采用Gleeble热模拟试验机通过改变冷却速度、终轧温度、终冷温度和驰豫时间,观察得到的不同组织并分析变化规律。结果表明,随冷却速度提高,多边形(准多边形)铁素体体积分数下降,贝氏体铁素体体积分数增加;提高终轧温度,晶粒粗化,但针状铁素体组织比例基本不变;提高终冷温度到550℃时,组织严重粗化,并伴随大量恶化低温韧性的大尺寸尖角状MA岛;增加驰豫时间,多边形铁素体晶粒尺寸及体积分数逐渐增大。结合性能研究结果,设计出X80低温管线钢组织为细小的准多边形铁素体+粒状贝氏体+少量贝氏体铁素体(QF+GB占90%以上)的组织,其中大角度晶界占比高于50%。最终工业化TMCP参数设定为终轧温度750℃+终冷温度480℃+冷速20℃/s,得到的产品具有优异的低温冲击韧性,满足了X80低温管线钢的综合性能要求。 |
其他语种文摘
|
As the pipeline extends to low temperature areas,higher requirements are imposed on the low temperature performance of the pipeline.In order to break through the bottleneck of the strength and toughness balance of high strength pipeline steel laid in the low-temperature region,it is necessary to optimize the microstructure and the thermal mechanical controlled process(TMCP)of the commercial available pipeline steel.In order to study the relationship between the TMCP parameters and the complex microstructure to guide the actual rolling process,the Gleeble thermal simulator was used to observe the different microstructures by changing the cooling rate,finishing rolling temperature,finishing cooling temperature and relaxed time,and then,the change rule in the different microstructures was analyzed.The results showed that with increase of the cooling rate,the volume percent of polygonal(quasi- polygonal)ferrite decreased but that of the bainitic ferrite increased.With increase of the finishing rolling temperature, the grains were coarsening but the fraction of acicular ferrite was basically unchanged.When the finishing cooling temperature was raised to 550℃,severely coarsened microstructure was emerged and a large number of MA islands with sharp-angled shape which are harmful to the low temperature toughness appeared.When the relaxed time was prolonged,the grain size and the volume percent of polygonal ferrite were both gradually increased.Based on the results on properties,a microstructure composed of fine quasi-polygonal ferrite(PF),granular bainite(GB) and a small amount of bainitic ferrite(BF)(QF+GB accounted for more than 90%)was designed for the X80pipeline steel used in extremely-cold region.In this microstructure,the percentage of high angle grain boundaries was more than 50%.Finally,the industrial TMCP parameters such as finishing rolling temperature,finishing cooling temperature and cooling rate were optimized to be 750 ℃,480 ℃ and 20 ℃/s,respectively,which made the X80 pipeline steel with excellent low temperature impact toughness,satisfying the requirements of comprehensive properties, especially in the extremely-cold region. |
来源
|
钢铁
,2020,55(2):103-111,138 【核心库】
|
DOI
|
10.13228/j.boyuan.issn0449-749x.20190216
|
关键词
|
热模拟
;
组织
;
TMCP
;
低温韧性
;
大角度晶界
|
地址
|
1.
中国科学院金属研究所, 辽宁, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 安徽, 合肥, 230000
3.
海洋装备用金属材料及其应用国家重点实验室, 海洋装备用金属材料及其应用国家重点实验室, 辽宁, 鞍山, 114009
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0449-749X |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划资助项目
|
文献收藏号
|
CSCD:6698895
|
参考文献 共
27
共2页
|
1.
张彩军. 管线钢的性能要求与炼钢生产特点.
炼钢,2002,18(5):40
|
CSCD被引
16
次
|
|
|
|
2.
程政. X80管线钢边部裂纹成因分析与改进.
中国冶金,2019,29(8):76
|
CSCD被引
2
次
|
|
|
|
3.
陈妍. 国内外管线钢最新研发进展.
轧钢,2012,29(2):37
|
CSCD被引
4
次
|
|
|
|
4.
Coldren A P. Acicular ferrite HSLA steels for line pipe.
Metal Science and Heat Treatment,1977,19(7):559
|
CSCD被引
6
次
|
|
|
|
5.
朱立光. 微合金元素钒和铌对诱发针状铁素体的影响.
钢铁,2019,54(8):216
|
CSCD被引
8
次
|
|
|
|
6.
赵晶军. 不同冷速下钛微合金化Q345B钢的HAZ组织及性能.
中国冶金,2019,29(3):11
|
CSCD被引
9
次
|
|
|
|
7.
肖福仁.
针状铁素体管线钢的组织控制与细化工艺研究,2003
|
CSCD被引
7
次
|
|
|
|
8.
赵明纯.
新一代针状铁素体管线钢的组织与性能研究,2003
|
CSCD被引
3
次
|
|
|
|
9.
Xiao F. Acicular ferritic microstructure of a low-carbon Mn-Mo-Nb microalloyed pipeline steel.
Materials Characterization,2005,54(4/5):305
|
CSCD被引
25
次
|
|
|
|
10.
王伟. 超低碳微合金管线钢中针状铁素体的组成对强度的影响.
金属学报,2007,43(6):578
|
CSCD被引
14
次
|
|
|
|
11.
由洋. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响.
金属学报,2012,48(11):1290
|
CSCD被引
17
次
|
|
|
|
12.
王小勇. Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究.
金属学报,2012,48(4):401
|
CSCD被引
15
次
|
|
|
|
13.
刘东升. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为.
金属学报,2011,47(10):1233
|
CSCD被引
20
次
|
|
|
|
14.
狄国标. 海洋平台用钢的生产现状及发展趋势.
机械工程材料,2008,32(8):1
|
CSCD被引
30
次
|
|
|
|
15.
Zhou T. Study of microstructural evolution and strength-toughness mechanism of heavy-wall induction bend pipe.
Materials Science and Engineering A,2014,615(6):436
|
CSCD被引
7
次
|
|
|
|
16.
Xie Z J. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel:The significance of high frequency induction tempering.
Materials Science and Engineering A,2014,618(8):112
|
CSCD被引
15
次
|
|
|
|
17.
Wang C. Effect of microstructural refinement on the toughness of low carbon martensitic steel.
Scripta Materialia,2008,58(6):492
|
CSCD被引
85
次
|
|
|
|
18.
Schino A D. Effect of microstructure on cleavage resistance of high-strength quenched and tempered steels.
Materials Letters,2009,63(22):1968
|
CSCD被引
10
次
|
|
|
|
19.
王伟.
高性能管线钢的组织及强韧化机理研究,2009
|
CSCD被引
5
次
|
|
|
|
20.
高惠临.
管线钢与管线钢管,2012
|
CSCD被引
34
次
|
|
|
|
|