基于放射性碳同位素分析的黑碳分离方法研究进展
Development of Isolated Methods of Black Carbon Based on Analysis of Radiocarbon (~(14)C): a Review
查看参考文献122篇
文摘
|
黑碳是生物质和化石燃料不完全燃烧产生的含碳连续统一体,因其复杂的化学结构和特殊的理化性质,涉及碳循环、全球气候、人类健康等诸多问题。放射性碳同位素(~(14)C)是一种区分生物源和化石源的有效手段,而黑碳的分离和纯化则是制约~(14)C示踪技术广泛应用的瓶颈。文章系统介绍了常用于~(14)C分析的黑碳分离方法,总结了每种方法的优缺点及其研究进展。认为改良后的热光法是一种常见的快速分离方法,具有相对误差小和可重复性高的优势。而催化加氢法是一种较为理想的分离方法,稳定且不受基质限制。同时指出:未来需要加强分离方法的标准化,提高方法内和方法间的可比性。特别是需要提供一种具有“真实的”~(14)C值的标准参考物,以判别分离方法的可靠性。 |
其他语种文摘
|
Black carbon (BC) is the broad continuum of carbonaceous material produced by the incomplete combustion of biomass and fossil fuels. Due to its complex chemical structure and special physical and chemical properties, BC has a significant impact on the carbon cycle, global climate and human health. Radiocarbon (~(14)C) has been proven to be a powerful tool of qualification and quantification of fossil and non-fossil contributions. However, one of the great challenges is to isolate and purify BC for ~(14)C analysis. The state of art in isolation methods commonly used in ~(14)C analysis of BC was systematically introduced, and the advantages and disadvantages of each method were summarized. Thermal-optical method is a rapid approach with the advantages of small relative error and low variability for ~(14)C analysis. Hydropyrolysis is an effective and stable pretreatment approach for matrix-independent ~(14)C analysis of BC. Finally, further studies on the standardization of isolation methods should be enhanced to improve the comparability between intra-method and inter-methods, especially defining and producing reference material with the“true”~(14)C value are urgently needed. |
来源
|
环境科学与技术
,2019,42(11):168-177 【核心库】
|
DOI
|
10.19672/j.cnki.1003-6504.2019.11.025
|
关键词
|
黑碳
;
放射性碳同位素
;
分离方法
|
地址
|
1.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室;;广东省环境资源利用与保护重点实验室, 广东, 广州, 510640
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1003-6504 |
学科
|
环境污染及其防治 |
基金
|
国家自然科学基金项目
;
国家重点研发计划项目
;
有机地球化学国家重点实验室项目
;
广东省省级科技计划项目
|
文献收藏号
|
CSCD:6697933
|
参考文献 共
122
共7页
|
1.
Goldberg E D.
Black Carbon in the Environment:Properties and Distribution,1985
|
CSCD被引
22
次
|
|
|
|
2.
Hedges J I. The molecularlyuncharacterized component of nonliving organic matter in natural environments.
Organic Geochemistry,2000,31(10):945-958
|
CSCD被引
36
次
|
|
|
|
3.
Masiello C A. New directions in black carbon organic geochemistry.
Marine Chemistry,2004,92(1):201-213
|
CSCD被引
86
次
|
|
|
|
4.
McBeath A V. Variation in the degree of aromatic condensation of chars.
Organic Geochemistry,2009,40(12):1161-1168
|
CSCD被引
5
次
|
|
|
|
5.
Schmidt M W I. Black carbon in soils and sediments:analysis, distribution, implications, and current challenges.
Global Biogeochemical Cycles,2000,14(3):777-793
|
CSCD被引
193
次
|
|
|
|
6.
Cohen-Ofri I. Modern and fossil charcoal: aspects of structure and diagenesis.
Journal of Archaeological Science,2006,33(3):428-439
|
CSCD被引
11
次
|
|
|
|
7.
Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon:a review.
Biogeochemistry,2007,85(1):91-118
|
CSCD被引
51
次
|
|
|
|
8.
Liang B. Black carbon affects the cycling of non-black carbon in soil.
Organic Geochemistry,2010,41(2):206-213
|
CSCD被引
156
次
|
|
|
|
9.
Nocentini C. Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent.
Organic Geochemistry,2010,41(7):682-689
|
CSCD被引
6
次
|
|
|
|
10.
Forbes M S. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems.
Science of the Total Environment,2006,370(1):190-206
|
CSCD被引
64
次
|
|
|
|
11.
Seiler W. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning.
Climatic Change,1980,2(3):207-247
|
CSCD被引
74
次
|
|
|
|
12.
Simpson M J. Overestimates of black carbon in soils and sediments.
Naturwissenschaften,2004,91(9):436-440
|
CSCD被引
19
次
|
|
|
|
13.
Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.
Nature,2001,409(6821):695-697
|
CSCD被引
239
次
|
|
|
|
14.
Bond T C. Bounding the role of black carbon in the climate system:a scientific assessment.
Journal of Geophysical Research: Atmospheres,2013,118(11):5380-5552
|
CSCD被引
194
次
|
|
|
|
15.
Nel A. Air pollution-related illness: effects of particles.
Science,2005,308(5723):804-806
|
CSCD被引
89
次
|
|
|
|
16.
Gundel L A. A study of the interaction of NO_2 with carbon particles.
Aerosol Science and Technology,1989,10(2):343-351
|
CSCD被引
2
次
|
|
|
|
17.
Reddy C M. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples.
Environmental Science and Technology,2002,36(8):1774-1782
|
CSCD被引
20
次
|
|
|
|
18.
曹芳. 碳质气溶胶的放射性碳同位素(~(14)C) 源解析:原理、方法和研究进展.
地球科学进展,2015,30(4):425-432
|
CSCD被引
12
次
|
|
|
|
19.
张世春. 碳同位素技术在碳质气溶胶源解析中应用的研究发展.
地球科学进展,2013,28(1):62-70
|
CSCD被引
6
次
|
|
|
|
20.
Cavalli F. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol.
Atmos Meas Tech,2010,3(1):79-89
|
CSCD被引
12
次
|
|
|
|
|