帮助 关于我们

返回检索结果

KMG:考虑逆向物流的无人机路径规划策略研究
KMG:Study on UAV path planning strategy by considering reverse logistics

查看参考文献27篇

裴颂文 1,2   沈天马 2   宁钟 1   谢雨鸣 1  
文摘 物流领域无人机派送正成为一种快捷高效的派件方式和应用热点.针对于正向、逆向的物流数据,无人机派送是国内外大型物流企业实施高效物流派送的重要手段.本文提出了一种融合拓展性K-Means++算法和遗传算法的路径动态规划模型(KMG),实现包含逆向物流的无人机调度策略.KMG模型将逆向物流路径融入正向物流路径之中,采用加权聚类算法确定不同属性包裹所需派送无人机的最小数量.在每一簇坐标数据的连通图中,采用遗传算法求解TSP问题,并对可行解进行编码,最终求解出最小欧拉回路.在仿真实验中,KMG模型比独立逆向物流派送的成本减少20.08%,使用拓展性K-Means++聚类计算的时间比传统K-Means算法缩短了298.85%.
其他语种文摘 Delivery by UAV in the logistics field is becoming a fast and efficient dispatch method and application hotspot.For forward and reverse logistics data,drone dispatch is an important means for large-scale logistics enterprises at home and abroad to implement efficient logistics delivery.A path dynamic programming model (KMG) that integrates the scalable K-Means++ algorithm and genetic algorithm to implement a UAV scheduling strategy including reverse logistics.The KMG model integrates the reverse logistics path into the forward logistics path,using weighted clustering.The algorithm determines the minimum number of dispatched drones required for different attribute packages.For each connected graph of coordinate data,the genetic algorithm is used to solve the TSP problem and the feasible solution is coded,and finally the minimum Euler loop is solved.The simulation results show that the cost of the KMG model is 20.08% lower than that of the independent reverse logistics.The time of using the scalable K-Means++ clustering calculation is 298.85% shorter than the traditional K-Means algorithm.
来源 系统工程理论与实践 ,2019,39(12):3111-3119 【核心库】
DOI 10.12011/1000-6788-2018-0679-09
关键词 无人机 ; 逆向物流 ; 拓展性K-Means++ ; 遗传算法 ; 路径规划
地址

1. 复旦大学管理学院, 上海, 200433  

2. 上海理工大学光电信息与计算机工程学院, 上海, 200093

语种 中文
文献类型 研究性论文
ISSN 1000-6788
学科 数学
基金 上海市浦江人才 ;  中国博士后科学基金 ;  国家自然科学基金重点项目 ;  国家自然科学基金面上项目 ;  上海市自然科学基金
文献收藏号 CSCD:6697613

参考文献 共 27 共2页

1.  Lin C E. Airspace risk assessment in logistic path planning for UAV. Integrated Communications,Navigation and Surveillance Conference (ICNS),2017:1-9 CSCD被引 1    
2.  Doherty P. A UAV search and rescue scenario with human body detection and geolocalization. Australian Conference on Artificial Intelligence,2007:1-13 CSCD被引 1    
3.  Remy M A. The first UAV-based P-and X-band interferometric SAR system. 2012 IEEE International Geoscience and Remote Sensing Symposium,2012:5041-5044 CSCD被引 2    
4.  Kim J. On the concerted design and scheduling of multiple resources for persistent UAV operations. Journal of Intelligent Robotic Systems,2014,74:479-498 CSCD被引 3    
5.  Song B D. Towards real time scheduling for persistent UAV service:A rolling horizon MILP approach,RHTA and the STAH heuristic. Unmanned Aircraft Systems,2014:506-515 CSCD被引 1    
6.  Song B D. Persistent UAV service:An improved scheduling formulation and prototypes of system components. Journal of Intelligent & Robotic Systems,2013,74(1/2):221-232 CSCD被引 3    
7.  El-Sayed M. A stochastic model for forward-reverse logistics network design under risk. Computers & Industrial Engineering,2010,58(3):423-431 CSCD被引 8    
8.  Kannan D. A carbon footprint based reverse logistics network design model. Resources Conservation and Recycling,2012,67:75-79 CSCD被引 14    
9.  Alumur S A. Multi-period reverse logistics network design. European Journal of Operational Research,2012,220(1):67-78 CSCD被引 9    
10.  Yu H. Improving the decision-making of reverse logistics network design part I:A MILP model under stochastic environment. Advanced Manufacturing and Automation VII,2018:431-438 CSCD被引 1    
11.  Zokaee S. Robust supply chain network design:An optimization model with real world application. Annals of Operations Research,2014,257(1/2):15-44 CSCD被引 3    
12.  Eskandarpour M. A large neighborhood search heuristic for supply chain network design. Computers & Operations Research,2017,80:23-37 CSCD被引 1    
13.  Govindan K. fuzzy multi-objective optimization model for sustainable reverse logistics network design. Ecological Indicators,2016,67:753-768 CSCD被引 5    
14.  Sun X. Analysis and design of the logistics system for rope manufacturing plant. MATEC Web of Conferences,2017:139 CSCD被引 1    
15.  Choi S G. 3D-based UAV path-planning algorithm considering altitude and reconnaissance areas. International Journal of Transportation and Logistics Management,2017,1(1):9-16 CSCD被引 1    
16.  Yang J F. Traffic detection system based on unmanned aerial vehicle integrated analysis (UAVIA) in e-business logistics. IEEE International Conference on E-business Engineering,2015 CSCD被引 1    
17.  Rana K. Unmanned aerial vehicles (UAVs):An emerging technology for logistics. International Journal of Business and Management Invention,2016,5(5):86-92 CSCD被引 1    
18.  Bahmani B. Scalable k-means++. Proceedings of the VLDB Endowment,2012,5(7):622-633 CSCD被引 24    
19.  Jain A K. Data clustering:50 years beyond K-means. Pattern Recognition Letters,2010,31(8):651-666 CSCD被引 357    
20.  Cui X L. Optimized big data K-means clustering using MapReduce. The Journal of Supercomputing,2014,70(3):1249-1259 CSCD被引 14    
引证文献 3

1 胡卉 疫情下医用防护物资"无接触"配送优化 中国管理科学,2023,31(5):152-163
CSCD被引 1

2 刘正元 多无人机群任务规划和编队飞行的综述和展望 指挥与控制学报,2023,9(6):623-636
CSCD被引 6

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号