解淀粉芽孢杆菌LJ02对黄瓜抗灰霉病菌的生防效果及其诱导抗性机理的初步研究
Preliminary study on the effect of the induced resistance in cucumber with Bacillus amyloliquefaciens LJ02 against Botrytis cinerea
查看参考文献27篇
文摘
|
为了解生防解淀粉芽孢杆菌LJ02诱导黄瓜抗灰霉病菌的防治效果和作用机制,分别测量了LJ02的发酵上清液和菌体悬浮液的诱导持效期、最适使用浓度以及最佳施用方法,并采用荧光定量PCR的方法法测定了LJ02诱导处理后黄瓜根部和叶部组织中分别表达PR1a蛋白、β-1,3-葡聚糖酶、几丁质酶、过氧化物酶的抗性基因PR-1、PR-2、PR-3、PR-9的相对表达量。结果表明,LJ02诱导黄瓜抗灰霉病菌的持效期在7 d左右,且原液与100倍稀释液效果最好,灌根施用效果最佳。 LJ02发酵上清液可诱导PR-1、PR-3、PR-9的表达,LJ02菌体悬浮液可诱导PR-1、PR-2、PR-3的表达。 |
其他语种文摘
|
For elucidating the control efficacy and mechanism of cucumber-resistant gray mold induced by Bacillus amyloliquefaciens LJ02,the induction duration,optimum concentration and optimal application method of fermentation broth (FB) and cell suspension (CS) of LJ02 were measured. The relative expression levels of resistance-related genes including PR-1,PR-2,PR-3 and PR-9 (encoding proteins PR1a,β-1,3-glucanase,chitinase and peroxidase,respectively) in cucumber root and leaf tissues after treated with LJ02 were determined by real-time PCR The results showed that the duration of LJ02-induced resistance to gray mold in cucumber was about 7 d with the stock solution and 100-fold dilution by the root irrigation. The LJ02FB can induce the expression of PR-1,PR-3 and PR-9,while the LJ02CS for theexpression of PR-1,PR-2 and PR-3. |
来源
|
植物病理学报
,2019,49(6):828-835 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000303
|
关键词
|
解淀粉芽孢杆菌
;
黄瓜
;
灰霉病
;
诱导抗病性
|
地址
|
天津农学院园艺园林学院, 天津, 300384
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
“十三五”国家重点计划重点专项
;
天津市蔬菜现代农业产业技术体系创新团队
|
文献收藏号
|
CSCD:6697490
|
参考文献 共
27
共2页
|
1.
Li H Z. Current status and development trend of cucumber cultivation in China (in Chinese).
蔬菜,2003(8):3-4
|
CSCD被引
1
次
|
|
|
|
2.
Liu D M. Occurrence of common diseases of cucumber and comprehensive prevention and control measures (in Chinese).
长江蔬菜,2014(17):48-49
|
CSCD被引
1
次
|
|
|
|
3.
Xu M. Occurrence and control of cucumber gray mold in greenhouse (in Chinese).
吉林蔬菜,2010(6):65-65
|
CSCD被引
1
次
|
|
|
|
4.
Yang G H. Common disease prevention and control technology for cucumber in greenhouse (in Chinese).
现代农业科技,2010(1):189-189
|
CSCD被引
1
次
|
|
|
|
5.
Liu J Q. Occurrence and control measures of cucumber gray mold in greenhouse (in Chinese).
农业科技通讯,2014(7):301-302
|
CSCD被引
2
次
|
|
|
|
6.
Mari M. Biological control of gray mold in pears by antagonistic bacteria.
biological Control,1996,7(1):30-37
|
CSCD被引
20
次
|
|
|
|
7.
Zhang R S. Identification of lipopeptides from Bacillus amyloliquefaciens Lx-11 and biocontrol efficacy of surfactin against bacterial leaf streak (in Chinese).
中国农业科学,2013,46(10):2014-2021
|
CSCD被引
3
次
|
|
|
|
8.
Wong J H. An antifungal protein from Bacillus amyloliquefaciens.
Journal of Applied Microbiology,2008,105(6):1888-1898
|
CSCD被引
15
次
|
|
|
|
9.
Zhang B J. Identification and growth-promotion of endophytic bacteria LP-5 in pear plant (in Chinese).
核农学报,2010,24(2):249-253
|
CSCD被引
1
次
|
|
|
|
10.
Qiu S X. Biochemical mechanisms of the resistance induced by metabolites of endophytic Bacillus amyloliquefaciens strain TB2 to suppress pepper fruit phytophthora blight (in Chinese).
热带作物学报,2010,31(10):1813-1820
|
CSCD被引
2
次
|
|
|
|
11.
Kloepper J W. Induced systemic resistance and promotion of plant growth by Bacillus spp.
Phytopathology,2004,94(11):1259-1266
|
CSCD被引
56
次
|
|
|
|
12.
Chowdhury S P. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen rhizoctonia solani.
Molecular plant-microbe interactions: MPMI,2015,28(9):984-996
|
CSCD被引
21
次
|
|
|
|
13.
Kawamura Y. INF1 Elicitin activates jasmonic acid-and ethylene-mediated signalling pathways and induces resistance to bacterial wilt disease in tomato.
Journal of Phytopathology (Berlin),2009,157(5):287-297
|
CSCD被引
1
次
|
|
|
|
14.
Kulik A. Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.
Plant Cell & Environment,2015,38(2):331-348
|
CSCD被引
2
次
|
|
|
|
15.
Alizadeh H. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14.
Biological Control,2013,65(1):14-23
|
CSCD被引
11
次
|
|
|
|
16.
Shoresh M. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203.
Phytopathology,2005,95(1):76-84
|
CSCD被引
14
次
|
|
|
|
17.
Sang M K. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber.
Phytopathology,2011,101(6):732-740
|
CSCD被引
4
次
|
|
|
|
18.
Legard D E. Effects of plant spacing and cultivar on incidence of botrytis fruit rot in annual strawberry.
Plant Disease,2000,84(5):531-538
|
CSCD被引
6
次
|
|
|
|
19.
Huang C N. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars.
World Journal of Microbiology & Biotechnology,2016,32(11):183-196
|
CSCD被引
2
次
|
|
|
|
20.
Doornbos R F. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. a review.
Agronomy for Sustainable Development,2012,32(1):227-243
|
CSCD被引
37
次
|
|
|
|
|