镰刀菌毒素脱氧雪腐镰刀菌烯醇脱毒菌及脱毒酶研究进展
Recent progress on microbial and enzymatic detoxification of Fusarium mycotoxin deoxynivalenol
查看参考文献71篇
文摘
|
脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON)是由镰刀菌在侵染小麦等禾谷类作物过程中产生的一种有毒次级代谢产物,是目前小麦及其制品中污染最为普遍的一种真菌毒素。DON能够对真核细胞产生多种毒性作用,严重危害人畜健康。DON又是一种毒力因子,促进镰刀菌扩展蔓延,加重赤霉病发病程度。利用脱毒菌、脱毒酶对DON毒素进行生物脱毒是最好的脱毒方式之一,其可将DON转化成低毒或无毒代谢产物,减少毒素对人畜健康的危害。脱毒基因还可作为新型抗源用于小麦赤霉病抗性改良,加速抗性品种的选育,从源头防止DON毒素的污染。本文概述了DON毒素生物脱毒的类型、代谢产物的毒性、脱毒基因的鉴定以及脱毒材料的应用等方面的研究进展,以期为DON毒素的生物防控和小麦赤霉病抗性改良提供参考。 |
其他语种文摘
|
Deoxynivalenol (DON) is a kind of toxic secondary metabolite produced by Fusarium pathogens during their infection of wheat and other small grain cereals. DON is the most frequent mycotoxin in cereals and has multiple toxic effects on eukaryotes,causing serious risks for human and farm animals. Acting as a virulence factor,DON can stimulate fungal infection,and thus aggravates the incidence of Fusarium head blight (FHB). Biological detoxification of DON by microbes or enzymes is considered a promising method. Detoxification microbes and enzymes transform DON into less toxic or non toxic compounds,with a result of reducing the risk of DON to human and farm animals. In addition,detoxification genes as new resistance sources will accelerate the progress of wheat FHB resistance improvement,consequently preventing DON contamination in cereals. This review outlines the types of DON biodetoxification methods,the toxicity of DON metabolites,identification of detoxification genes and application of detoxification materials,with the aim of providing theoretical basis for biocontrol of DON and improvement of FHB resistance in cereals. |
来源
|
植物病理学报
,2019,49(5):577-589 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000393
|
关键词
|
镰刀菌毒素
;
脱氧雪腐镰刀菌烯醇
;
微生物脱毒
;
脱毒酶
|
地址
|
1.
湖北省农业科学院粮食作物研究所, 武汉, 430064
2.
华中农业大学麦类作物分子技术实验室, 武汉, 430070
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家转基因生物新品种培育重大专项
;
中国博士后科学基金
|
文献收藏号
|
CSCD:6697463
|
参考文献 共
71
共4页
|
1.
Cheng S H. Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China (in Chinese).
江苏农业学报,2012,28(5):938-942
|
CSCD被引
5
次
|
|
|
|
2.
Liu Y K. Review on improvement of Fusarium head blight resistance in wheat (in Chinese).
麦类作物学报,2016,36(1):51-57
|
CSCD被引
1
次
|
|
|
|
3.
Liao Y C. Recent progress on antibody-based resistance against Fusarium head blight pathogens in wheat (in Chinese).
科技导报,2016,34(22):68-74
|
CSCD被引
1
次
|
|
|
|
4.
Shi J R. Deoxynivalenol contamination in wheat and its management (in Chinese).
中国农业科学,2014,47(18):3641-3654
|
CSCD被引
3
次
|
|
|
|
5.
Bai G H. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection,but does not cause disease spread in wheat spikes.
Mycopathologia,2002,153(2):91-98
|
CSCD被引
11
次
|
|
|
|
6.
Pestka J J. Deoxynivalenol: mechanisms of action,human exposure,and toxicological relevance.
Archives of Toxicology,2010,84(9):663-679
|
CSCD被引
59
次
|
|
|
|
7.
He J. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review.
Trends in Food Science and Technology,2010,21(2):67-76
|
CSCD被引
7
次
|
|
|
|
8.
Su F R. The state of mycotoxin maximum limit of grain (in Chinese).
粮油食品科技,2007,15(6):57-59
|
CSCD被引
2
次
|
|
|
|
9.
Sugita-Konishi Y. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat pro-ducts.
Bioscience Biotechnology and Biochemistry,2006,70(7):1764-1768
|
CSCD被引
8
次
|
|
|
|
10.
Karlovsky P. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives.
Applied Microbiology and Biotechnology,2011,91(3):491-504
|
CSCD被引
12
次
|
|
|
|
11.
Binder J. Screening for deoxynivalenol-detoxifying anaerobic rumen microorganisms.
Cereal Research Communications,1997,25(3):343-346
|
CSCD被引
8
次
|
|
|
|
12.
Okubara P A. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene.
Theoretical and Applied Genetics,2002,106(1):74-83
|
CSCD被引
25
次
|
|
|
|
13.
Manoharan M. Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol.
Plant Science,2006,171(6):699-706
|
CSCD被引
7
次
|
|
|
|
14.
Ohsato S. Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol.
Plant Cell Reports,2007,26(4):531-538
|
CSCD被引
5
次
|
|
|
|
15.
Shin S. Transgenic Arabidopsis thaliana expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol.
Journal of Experimental Botany,2012,63(13):4731-4740
|
CSCD被引
8
次
|
|
|
|
16.
Li X. Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum.
Molecular Plant-Microbe Interactions,2015,28(11):1237-1246
|
CSCD被引
13
次
|
|
|
|
17.
Xing L. Over-expressing a UDP-glucosyltransferase gene (Ta-UGT3) enhances Fusarium head blight resistance of wheat.
Plant Growth Regulation,2018,84(3):561-571
|
CSCD被引
2
次
|
|
|
|
18.
Zhao L. Cloning and characterization of a specific UDP-glycosyltransferase gene induced by DON and Fusarium graminearum.
Plant Cell Report,2018,37(4):641-652
|
CSCD被引
2
次
|
|
|
|
19.
Swanson S P. Preparation and characterization of the deepoxy trichothecenes: deepoxy HT-2,deepoxy T-2 triol,deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol.
Applied and Environmental Microbiology,1987,53(12):2821-2826
|
CSCD被引
3
次
|
|
|
|
20.
He P. Microbial transformation of deoxynivalenol (vomitoxin).
Applied and Environmental Microbiology,1992,58(12):3857-3863
|
CSCD被引
14
次
|
|
|
|
|