基于动态化学键构建自愈合高分子水凝胶
Self-healing polymer hydrogel based on dynamic chemical bonds
查看参考文献66篇
文摘
|
高分子水凝胶是一种具有三维网络结构的软材料,能够吸收并保持大量的水分。高分子水凝胶具有良好的生物相容性和力学性能,在生物医学和生物工程领域具有重要的应用价值。自愈合水凝胶是一种能够响应外界刺激并修复自身损伤的智能凝胶。相比传统水凝胶,自愈合水凝胶具有修复损伤的特性,近年来受到科学界的广泛关注。基于动态化学的自愈合水凝胶是一种能够通过动态的共价键或非共价键交联而重新形成三维网络结构从而修复损伤的新型自愈合水凝胶,该水凝胶能够快速多次地修复自身损伤,有良好的环境适应性,为开发多功能智能新材料奠定了基础。本文综述了近年来基于动态化学键构建自愈合水凝胶的研究进展,重点阐述了基于氢键相互作用、金属配位相互作用、主-客体相互作用、离子相互作用、亲疏水相互作用、亚胺键/酰腙键、硼酸酯键和二硫键的自愈合水凝胶的最新研究情况,同时提出了自愈合水凝胶的一些问题,并分析了未来的发展方向。 |
其他语种文摘
|
Polymer hydrogel is a soft material with a three-dimensional network structure that can absorb and retain a large amount of water.Polymer hydrogels have good biocompatibility,mechanical properties and important application value in biomedical and bioengineering fields.Self-healing hydrogels are smart hydrogels that respond to external stimuli and repair their own damage. Compared with the traditional hydrogel,the self-healing hydrogel has the property of repairing damage,and received extensive attention in the scientific field in recent years.Dynamic chemistrybased self-healing hydrogels are novel self-healing hydrogels that can reshape three-dimensional network structures by dynamic covalent or non-covalent bonding to repair damage.The new selfhealing hydrogel can quickly repair its own damage and has good environmental adaptability,laying the foundation for the development of self-healing hydrogels as multifunctional new materials.The research progress of recent self-healing hydrogels based on dynamic chemistry was reviewed in this paper,especially focusing on the updated development on self-healing hydrogels based on hydrogen bonds, metal coordination interactions, host-guest interactions,ionic bonds, hydrophobic interactions,imine bonds/acylhydrazone bonds,borate bonds and disulphide bonds,and meanwhile, the problem of self-healing hydrogels was put forward,and the future direction of development was finally predicted. |
来源
|
材料工程
,2020,48(4):73-82 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2019.000698
|
关键词
|
自愈合水凝胶
;
动态化学
;
共价键
;
非共价键
|
地址
|
1.
天津科技大学化工与材料学院, 天津, 300457
2.
复旦大学, 聚合物分子工程国家重点实验室, 上海, 200433
3.
天津科技大学, 天津市海洋资源与化学重点实验室, 天津, 300457
4.
天津科技大学, 天津市制浆造纸重点实验室, 天津, 300457
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
2018年度天津市教委科研计划项目
;
天津市海洋资源与化学重点实验室资助项目
;
天津市制浆造纸重点实验室开放基金资助项目
|
文献收藏号
|
CSCD:6694220
|
参考文献 共
66
共4页
|
1.
Ashraf S. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM:role in drug delivery and tissue engineering.
Macromolecular Research,2016,24(4):297-304
|
CSCD被引
12
次
|
|
|
|
2.
Li J. Activation of dopamine D1receptors regulates dendritic morphogenesis through Rac1and RhoA in prefrontal cortex neurons.
Molecular Neurobiology,2015,51(3):1024-1037
|
CSCD被引
2
次
|
|
|
|
3.
Kim K. Natural polypeptide-based supramolecular nanogels for stable noncovalent encapsulation.
Biomacromolecules,2013,14(10):3515-3522
|
CSCD被引
9
次
|
|
|
|
4.
Michelsen V B. Quantitative analysis of TEGDMA and HEMA eluted into saliva from two dental composites by use of GC/MS and tailor-made internal standards.
Dental Materials,2008,24(6):724-731
|
CSCD被引
2
次
|
|
|
|
5.
Sacco P. A silver complex of hyaluronan-lipoate(SHLS12):synthesis,characterization and biological properties.
Carbohydrate Polymers,2016,136:418-426
|
CSCD被引
4
次
|
|
|
|
6.
董建成. 阳离子光敏抗菌型水凝胶的制备及性能表征.
材料工程,2019,47(2):60-65
|
CSCD被引
2
次
|
|
|
|
7.
Sutar P B. Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system.
Journal of Materials Science Materials in Medicine,2008,19(6):2247-2253
|
CSCD被引
7
次
|
|
|
|
8.
Assaf S M. Versatile pectin grafted poly (N-isopropylacrylamide);modulated targeted drug release.
Journal of Macromolecular Science:Part A,2011,48(6):493-502
|
CSCD被引
2
次
|
|
|
|
9.
Toohey K S. Self-healing materials with microvascular networks.
Nature Materials,2007,6(8):581-585
|
CSCD被引
69
次
|
|
|
|
10.
Hamilton A R. Self-healing of internal damage in synthetic vascular materials.
Advanced Materials,2010,22(45):5159-5163
|
CSCD被引
18
次
|
|
|
|
11.
Patrick J F. Self-healing: continuous self-healing life cycle in vascularized structural composites.
Advanced Materials,2014,26(25):4302-4308
|
CSCD被引
16
次
|
|
|
|
12.
张亚玲. 基于动态化学的自愈性水凝胶及其在生物医用材料中的应用研究展望.
化学学报,2013,71(4):485-492
|
CSCD被引
14
次
|
|
|
|
13.
Blaiszikl B J. Self-healing polymers and composites.
Annual Review of Materials Research,2010,40(5):179-211
|
CSCD被引
42
次
|
|
|
|
14.
Brochu A B W. Self-healing biomaterials.
Journal of Biomedical Materials Research Part A. A,2011,96(2):492-506
|
CSCD被引
8
次
|
|
|
|
15.
Saha S. Amino acid-based multiresponsive low-molecular weight metallohydrogels with loadbearing and rapid self-healing abilities.
Chemical Communications,2014,50(23):3004-3006
|
CSCD被引
3
次
|
|
|
|
16.
Hussain I. Glycogen-based selfhealing hydrogels with ultra-stretchable,flexible,and enhanced mechanical properties via sacrificial bond interactions.
International Journal of Biological Macromolecules,2018,117:648-658
|
CSCD被引
6
次
|
|
|
|
17.
Cao J. Self-healing supramolecular hydrogels fabricated by cucurbit uril-enhancedπ-πinteraction.
International Journal of Polymeric Materials and Polymeric Biomaterials,2016,65(10):537-542
|
CSCD被引
4
次
|
|
|
|
18.
Cai T. Self-healable tough supramolecular hydrogels crosslinked by poly-cyclodextrin through hostguest interaction.
Carbohydrate Polymers,2018,193:54-61
|
CSCD被引
3
次
|
|
|
|
19.
Tuncaboylu D C. Tough and self-healing hydrogels formed via hydrophobic interactions.
Macromolecules,2011,44(12):4997-5005
|
CSCD被引
52
次
|
|
|
|
20.
Jiang G. Self-healing mechanism and mechanical behavior of hydrophobic association hydrogels with high mechanical strength.
Journal of Macromolecular Science: Part A,2010,47(4):335-342
|
CSCD被引
7
次
|
|
|
|
|