Porous spherical NiO@NiMoO_4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials
纳米结构的多孔球形NiO@NiMoO_4@PPy作为先进的电化学赝电容器材料
查看参考文献67篇
文摘
|
In this work, a rational design and construction of porous spherical NiO@NiMoO_4 wrapped with PPy was reported for the application of high-performance supercapacitor(SC).The results show that the NiMoO_4 modification changes the morphology of NiO, and the hollow internal morphology combined with porous outer shell of NiO@NiMoO_4 and NiO@NiMoO_4@PPy hybrids shows an increased specific surface area(SSA), and then promotes the transfer of ions and electrons.The shell of NiMoO_4 and PPy with high electronic conductivity decreases the charge-transfer reaction resistance of NiO, and then improves the electrochemical kinetics of NiO.At 20 A g~(-1), the initial capacitances of NiO, NiMoO_4, NiO@NiMoO_4 and NiO@NiMoO_4@PPy are 456.0, 803.2, 764.4 and 941.6 F g~(-1), respectively.After 10,000 cycles, the corresponding capacitances are 346.8, 510.8, 641.2 and 904.8 F g~(-1), respectively.Especially, the initial capacitance of NiO@NiMoO_4@PPy is 850.2 F g~(-1), and remains 655.2 F g~(-1) with a high retention of 77.1% at 30 A g~(-1) even after 30,000 cycles.The calculation result based on density function theory shows that the much stronger Mo-O bonds are crucial for stabilizing the NiO@NiMoO_4 composite, resulting in a good cycling stability of these materials. |
其他语种文摘
|
构建了一种PPy缠绕的多孔球形NiO@NiMoO_4材料,并应用于高性能的超级电容器.结果表明,NiO改性改变了NiMoO_4的形貌,NiO@NiMoO_4和NiO@NiMoO_4@ PPy均呈现一种内部中空和外壳多孔的形貌,并具有较大的比表面积,进而促进了离子和电荷的转移.NiMoO_4和PPy壳具有较高的电子电导率,降低了NiO的电荷转移电阻,进而提高了其电化学动力学性能.在电流密度为20 A/g时,NiO, NiMoO_4,NiO@NiMoO_4和NiO@NiMoO_4@PPy电极的初始放电比电容分别为456.0,803.2,764.4和941.6 F/g.在电流密度增大至30 A/g时,NiO@NiMoO_4@PPy电极的初始放电比电容为850.2 F/g, 30000次循环后比电容仍达到655.2 F/g,电容保有率为77.1%.第一性原理计算结果表明,更强的Mo-O有利于稳定NiO@NiMoO_4复物的结构,进而提高了其循环稳定性. |
来源
|
Science Bulletin
,2020,65(7):546-556 【核心库】
|
DOI
|
10.1016/j.scib.2020.01.011
|
关键词
|
NiO
;
NiO@NiMoO_4@PPy
;
Porous spherical structure
;
Supercapacitor
;
Cycling stability
|
地址
|
1.
School of Materials Science and Engineering, Northeastern University, Shenyang, 110819
2.
School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004
3.
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004
4.
School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002
5.
School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Harbin, 150080
6.
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2095-9273 |
学科
|
一般工业技术;电工技术 |
基金
|
国家自然科学基金
;
the Fundamental Research Funds for the Central Universities
;
Key Program for International S&T Cooperation Projects of China
|
文献收藏号
|
CSCD:6691622
|
参考文献 共
67
共4页
|
1.
Yang H. Halogen conversion-intercalation chemistry promises high energy density Li-ion battery.
Sci Bull,2019,64:1393-1395
|
CSCD被引
2
次
|
|
|
|
2.
Zhang J F. One-pot synthesis of nickel-cobalt hydroxyfluorides nanowires with ultrahigh energy density for an asymmetric supercapacitor.
Sci Bull,2018,63:322-330
|
CSCD被引
1
次
|
|
|
|
3.
Yu Q. Macroscopic synthesis of ultrafine N-doped carbon nanofibers for superior capacitive energy storage.
Sci Bull,2019,64:1617-1624
|
CSCD被引
10
次
|
|
|
|
4.
Jia S. Hierarchically porous CuO nano-labyrinths as binderfree anodes for long-life and high-rate lithium ion batteries.
Nano Energy,2019,59:229-236
|
CSCD被引
7
次
|
|
|
|
5.
Zhao S. Interconnected Ni(HCO_3)_2 hollow spheres enabled by self-sacrificial templating with enhanced lithium storage properties.
ACS Energy Lett,2017,2:111-116
|
CSCD被引
3
次
|
|
|
|
6.
Han C. Biopolymer-assisted synthesis of 3D interconnected Fe_3O_4@carbon core@shell as anode for asymmetric lithium ion capacitors.
Carbon,2018,140:296-305
|
CSCD被引
12
次
|
|
|
|
7.
Jiang B. In-situ crafting of ZnFe_2O_4 nanoparticles impregnated within continuous carbon network as advanced anode materials.
ACS Nano,2016,10:2728-2735
|
CSCD被引
8
次
|
|
|
|
8.
Shi R. NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors.
J Mater Chem A,2018,6:17057-17066
|
CSCD被引
14
次
|
|
|
|
9.
Su J. Morphology reshaping enabling self-densification of manganese oxide hybrid materials for high-density lithium storage anodes.
Adv Funct Mater,2019,29:1907154
|
CSCD被引
6
次
|
|
|
|
10.
Song H. In situ subangstrom-thick organic engineering enables mono-scale, ultrasmall ZnO nanocrystals for a high initial coulombic efficiency, fully reversible conversion, and cycle-stable Li-ion storage.
Adv Energy Mater,2019,9:1900426
|
CSCD被引
2
次
|
|
|
|
11.
Jabeen N. Unique core-shell nanorod arrays with polyaniline deposited into mesoporous NiCo_2O_4 support for high-performance supercapacitor electrodes.
ACS Appl Mater Interfaces,2016,8:6093-6100
|
CSCD被引
9
次
|
|
|
|
12.
Xia H. Hierarchical heterostructures of Ag nanoparticles decorated MnO_2 nanowires as promising electrodes for supercapacitors.
J Mater Chem A,2015,3:1216-1221
|
CSCD被引
6
次
|
|
|
|
13.
Zhang J. Hierarchical electrodes assembled by alternate NiCo hydroxide nanowires arrays and conductive interlayers with enhanced properties for electrochemical supercapacitors.
J Alloy Compd,2019,785:725-731
|
CSCD被引
1
次
|
|
|
|
14.
Elkholy A E. A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors.
Electrochim Acta,2019,296:59-68
|
CSCD被引
5
次
|
|
|
|
15.
Han Y. Recent progress in 2D materials for flexible supercapacitors.
J Energy Chem,2018,27:57-72
|
CSCD被引
13
次
|
|
|
|
16.
Krishnamoorthy K. Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor.
Electrochim Acta,2017,227:85-94
|
CSCD被引
2
次
|
|
|
|
17.
Eftekhari A. Polyaniline supercapacitors.
J Power Sources,2017,347:86-107
|
CSCD被引
31
次
|
|
|
|
18.
Meng Q F. Research progress on conducting polymer based supercapacitor electrode materials.
Nano Energy,2017,36:268-285
|
CSCD被引
53
次
|
|
|
|
19.
Jiao Y. Metal-organic framework derived Ni/NiO microparticles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor.
Appl Catal B Environ,2019,244:732-739
|
CSCD被引
15
次
|
|
|
|
20.
Salunkhe R R. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects.
ACS Nano,2017,11:5293-5308
|
CSCD被引
47
次
|
|
|
|
|