基于高光谱影像多维特征的植被精细分类
Sophisticated Vegetation Classification Based on Multi-Dimensional Features of Hyperspectral Image
查看参考文献16篇
文摘
|
目前,高光谱植被精细分类存在三个问题:单纯利用光谱信息得到的分类精度较低;光谱数据存在噪声影响了最终的分类结果;缺少针对具体应用场景而设计的分类方法.为此,提出了一种基于高光谱影像多维特征的植被精细分类方法,通过光谱数据降维、纹理特征提取以及植被指数选择三个方面对高光谱影像数据进行分析与利用,依靠前期现场调查得到的地面植被分布情况,选择训练样本并进行支持向量机(Support vector machine, SVM)监督分类,完成地面植被的精细分类,对分类结果进行验证,总体精度可达99.6% .结果表明,基于高光谱影像多维特征的植被分类方法能够有效地减小数据噪声、提高信息利用率,为植被生态监测提供更为准确的数据支撑. |
其他语种文摘
|
At present, there are three major challenges in the sophisticated vegetation classification using hyperspectral image. The first is that the accuracy of classification obtained simply by using spectral information is low. The second is that the presence of noise in the spectral data affects the final classification results, and the third is the lack of classification methods designed for specific application scenarios. To this end, a method for sophisticated vegetation classification based on multi-dimensional features of hyperspectral images is proposed. In this method, hyperspectral image data are analyzed and utilized firstly through three aspects of spectral data dimension reduction, texture feature extraction and vegetation index selection. And then, based on the distribution of ground vegetation obtained from previous field surveys, training samples are selected and Support Vector Machine (SVM) supervised classification is performed, which results in the sophisticated classification of ground vegetation at last. To verify the classification results, the overall accuracy can reach 99.6%. The result shows that vegetation classification based on multi-dimensional features of hyperspectral image can effectively reduce data noise and improve information utilization rate, and can provide more reliable data support for vegetation ecological monitoring work. |
来源
|
大气与环境光学学报
,2020,15(2):117-124 【核心库】
|
DOI
|
10.3969/j.issn.1673-6141.2020.02.005
|
关键词
|
高光谱
;
光谱降维
;
纹理特征
;
植被指数
;
支持向量机
|
地址
|
1.
中国科学院西安光学精密机械研究所, 陕西省海洋光学重点实验室, 陕西, 西安, 710119
2.
青岛海洋科学与技术试点国家实验室海洋观测与探测联合实验室, 青岛海洋科学与技术试点国家实验室海洋观测与探测联合实验室, 山东, 青岛, 266235
3.
国家海洋局北海海洋技术保障中心, 山东, 青岛, 266033
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1673-6141 |
学科
|
测绘学 |
基金
|
国家重点研发计划重点专项项目
|
文献收藏号
|
CSCD:6690715
|
参考文献 共
16
共1页
|
1.
陈丹.
基于HJ-1A星HSI高光谱数据的植被分类研究. 硕士论文,2012
|
CSCD被引
1
次
|
|
|
|
2.
浦瑞良.
高光谱遥感及其应用,2000
|
CSCD被引
292
次
|
|
|
|
3.
梁志林. 高光谱遥感城市植被识别方法研究.
地理空间信息,2017,15(2):72-75
|
CSCD被引
7
次
|
|
|
|
4.
明群杰.
基于光谱匹配技术的青藏高原典型植被识别与提取. 硕士论文,2017
|
CSCD被引
1
次
|
|
|
|
5.
Sylvain J. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data.
Remote Sensing of Environment,2014,147(18):121132
|
CSCD被引
7
次
|
|
|
|
6.
Cheng Boyan. Building simplification using backpropagation neural networks: a combination of cartographers' expertise and raster-based local perception.
Mapping Sciences and Remote Sensing,2013,50(5):527-542
|
CSCD被引
8
次
|
|
|
|
7.
周亚敏. 基于BP神经网络的盐湖矿物离子含量高光谱反演.
国土资源遥感,2016,28(2):34-40
|
CSCD被引
7
次
|
|
|
|
8.
Maulik U. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery.
Isprs Journal of Photogrammetry & Remote Sensing,2013,77:66-78
|
CSCD被引
10
次
|
|
|
|
9.
刘艳玲.
基于高光谱图象的植被理化参数反演及精细分类. 硕士论文,2018
|
CSCD被引
1
次
|
|
|
|
10.
Luo Guangchun. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising.
Canadian Journal of Remote Sensing,2016,42(2):106-116
|
CSCD被引
6
次
|
|
|
|
11.
王彩文. 一种新的空谱联合探测高光谱影像目标探测算法.
光谱学与光谱分析,2016,36(4):1163-1169
|
CSCD被引
1
次
|
|
|
|
12.
乔雨.
祁连山中段典型植被的光谱特征研究与应用. 硕士论文,2017
|
CSCD被引
1
次
|
|
|
|
13.
Rouse J W. Monitoring Vegetation Systems in the Great Plains with ERTS.
Proceedings of Third Earth Resources Technology Satellite-1 Symposium. (351),1974:310-317
|
CSCD被引
4
次
|
|
|
|
14.
Villamuelas M. The enhanced vegetation index (EVI) as a proxy for diet quality and composition in a mountain ungulate.
Ecological Indicators,2016,61:658-666
|
CSCD被引
4
次
|
|
|
|
15.
Rondeaux G. Optimization of soil-adjusted vegetation indices.
Remote Sensing of Environment,1996,55(2):95-107
|
CSCD被引
308
次
|
|
|
|
16.
Elvidge C D. Comparison of broad-band and narrow-band red and near-infrared vegetation indices.
Remote Sensing of Environment,1995,54(1):38-48
|
CSCD被引
41
次
|
|
|
|
|