距离千米级双望远镜的空间碎片激光测距
Laser Ranging for Space Debris Using Double Telescopes with Kilometer-Level Distance
查看参考文献17篇
文摘
|
以上海天文台收发分离的21cm/60cm口径卫星激光测距系统为例,利用高精度计时器、光电探测器等设备,对发射/接收系统的时延分别进行测量与标定,测量地面靶目标所得到的发射/接收系统的总时延与常规地面靶目标测量方法的测量均值相比,时延标定误差为400ps。在此基础上,利用高精度时钟系统,并在解决远距离望远镜回波信号探测距离门控制问题的条件下,实现了相距2.5km的双望远镜系统对距离大于1000km的空间碎片目标的测量,验证了远距离接收空间碎片目标激光回波信号的能力。 |
其他语种文摘
|
In this paper,using high-precision timers,photoelectric detectors,and other equipment,the laser transmitting and receiving system delays for a 60-cm receiving telescope aperture system at the Shanghai Observatory are measured and calibrated,with a transmitting telescope aperture of 21cm.By comparing the result of a target measurement by a space debris laser ranging(SDLR)system on the ground with the measured results of the conventional target measurement,we find that the calibration error of delay is approximately 400ps.On this basis,using a high-precision clock system in a laser ranging system,SDLR is achieved for the first time in China using a single telescope to send laser pulses and double telescopes with a distance of 2.5km to receive laser echoes, solving the problem of detection range gate control of echo signals from the remote telescope.This system realizes a range distance of over 1000km.The proposed method demonstrates the ability to receive laser echoes from space debris from a remote distance on the ground with multiple telescopes. |
来源
|
光学学报
,2020,40(2):0228002 【核心库】
|
DOI
|
10.3788/AOS202040.0228002
|
关键词
|
遥感
;
卫星激光测距
;
多台望远镜接收
;
系统时延
;
距离门控
;
远距离探测
|
地址
|
1.
中国科学院上海天文台, 上海, 200030
2.
中国科学院空间目标与碎片观测重点实验室, 中国科学院空间目标与碎片观测重点实验室, 江苏, 南京, 210008
3.
中国科学院新疆天文台, 新疆, 乌鲁木齐, 830011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金
;
博士后创新人才计划
;
博士后第62批面上基金
|
文献收藏号
|
CSCD:6682867
|
参考文献 共
17
共1页
|
1.
Lucchesi M. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE).
Classical and Quantum Gravity,2015,32(15):155012
|
CSCD被引
4
次
|
|
|
|
2.
Bonin J A. Using satellite laser ranging to measure ice mass change in Greenland and Antarctica.
The Cryosphere,2018,12(1):71-79
|
CSCD被引
3
次
|
|
|
|
3.
Kirchner G. Ajisai spin parameter determination using Graz kilohertz satellite laser ranging data.
IEEE Transactions on Geoscience and Remote Sensing,2007,45(1):201-205
|
CSCD被引
8
次
|
|
|
|
4.
张忠萍. 北斗卫星全球激光测距观测及数据应用.
中国激光,2017,44(4):0404004
|
CSCD被引
6
次
|
|
|
|
5.
Bennett J C. Accurate orbit predictions for debris orbit manoeuvre using ground-based lasers.
Advances in Space Research,2013,52(11):1876-1887
|
CSCD被引
10
次
|
|
|
|
6.
Coyle D B. Adapting aground-based laser ranging system at NASA-GSFC for identification and tracking of orbital debris.
Proceedings of SPIE. 8731,2013:87310F
|
CSCD被引
1
次
|
|
|
|
7.
张忠萍. 双望远镜的空间碎片激光测距试验研究.
红外与激光工程,2016,45(1):0102002
|
CSCD被引
11
次
|
|
|
|
8.
李语强. 空间碎片漫反射激光测距试验.
中国激光,2011,38(9):0908001
|
CSCD被引
20
次
|
|
|
|
9.
林来兴. 空间碎片现状与清理.
航天器工程,2012,21(3):1-10
|
CSCD被引
11
次
|
|
|
|
10.
赵鹏. 激光漫反射测距回波信号在线提取方法.
光学学报,2015,35(10):1028002
|
CSCD被引
8
次
|
|
|
|
11.
Smith C H. The EOS space debris tracking system.
Proceedings of the 2006 AMOS Technical Conference,September 10-14,2006,Kihei, HI, USA. 1014,2006:719728
|
CSCD被引
1
次
|
|
|
|
12.
Kirchner G. Multistatic laser ranging to space debris.
18th International Workshop on Laser Ranging,November 11-15,2013, Fujiyoshida,Japan,2013:13-0213
|
CSCD被引
1
次
|
|
|
|
13.
Courde C. Lunar laser ranging in infrared at the Grasse laser station.
Astronomy & Astrophysics,2017,602(A&A):A90
|
CSCD被引
9
次
|
|
|
|
14.
Vilnrotter V.
An optical array receiver for deep-space communication through atmospheric turbulence. JPL Publication: IPN Progress Report,2003:42-154
|
CSCD被引
1
次
|
|
|
|
15.
张海峰. 多望远镜信号接收的激光测距系统探测能力.
红外与激光工程,2018,47(9):0906002
|
CSCD被引
2
次
|
|
|
|
16.
张海峰. 基于光纤时间频率传递的多望远镜激光测距时间同步研究.
激光与光电子学进展,2019,56(1):011204
|
CSCD被引
4
次
|
|
|
|
17.
Prochazka I. Identification and calibration of one-way delays in satellite laser ranging systems.
Advances in Space Research,2017,59(10):2466-2472
|
CSCD被引
6
次
|
|
|
|
|